![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | Unicode version |
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdvsn |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 15362 |
. . . 4
![]() ![]() ![]() ![]() | |
2 | 1 | bdss 15356 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
3 | bdcv 15340 |
. . . 4
![]() ![]() | |
4 | 3 | bdsnss 15365 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | ax-bdan 15307 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | eqss 3194 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 5, 6 | bd0r 15317 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-bd0 15305 ax-bdan 15307 ax-bdal 15310 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-in 3159 df-ss 3166 df-sn 3624 df-bdc 15333 |
This theorem is referenced by: bdop 15367 |
Copyright terms: Public domain | W3C validator |