Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn Unicode version

Theorem bdvsn 13756
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn  |- BOUNDED  x  =  {
y }
Distinct variable group:    x, y

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 13752 . . . 4  |- BOUNDED  { y }
21bdss 13746 . . 3  |- BOUNDED  x  C_  { y }
3 bdcv 13730 . . . 4  |- BOUNDED  x
43bdsnss 13755 . . 3  |- BOUNDED  { y }  C_  x
52, 4ax-bdan 13697 . 2  |- BOUNDED  ( x  C_  { y }  /\  { y }  C_  x )
6 eqss 3157 . 2  |-  ( x  =  { y }  <-> 
( x  C_  { y }  /\  { y }  C_  x )
)
75, 6bd0r 13707 1  |- BOUNDED  x  =  {
y }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    C_ wss 3116   {csn 3576  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdan 13697  ax-bdal 13700  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-bdc 13723
This theorem is referenced by:  bdop  13757
  Copyright terms: Public domain W3C validator