Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn Unicode version

Theorem bdvsn 15604
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn  |- BOUNDED  x  =  {
y }
Distinct variable group:    x, y

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 15600 . . . 4  |- BOUNDED  { y }
21bdss 15594 . . 3  |- BOUNDED  x  C_  { y }
3 bdcv 15578 . . . 4  |- BOUNDED  x
43bdsnss 15603 . . 3  |- BOUNDED  { y }  C_  x
52, 4ax-bdan 15545 . 2  |- BOUNDED  ( x  C_  { y }  /\  { y }  C_  x )
6 eqss 3199 . 2  |-  ( x  =  { y }  <-> 
( x  C_  { y }  /\  { y }  C_  x )
)
75, 6bd0r 15555 1  |- BOUNDED  x  =  {
y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    C_ wss 3157   {csn 3623  BOUNDED wbd 15542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15543  ax-bdan 15545  ax-bdal 15548  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-sn 3629  df-bdc 15571
This theorem is referenced by:  bdop  15605
  Copyright terms: Public domain W3C validator