Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn Unicode version

Theorem bdvsn 14166
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn  |- BOUNDED  x  =  {
y }
Distinct variable group:    x, y

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 14162 . . . 4  |- BOUNDED  { y }
21bdss 14156 . . 3  |- BOUNDED  x  C_  { y }
3 bdcv 14140 . . . 4  |- BOUNDED  x
43bdsnss 14165 . . 3  |- BOUNDED  { y }  C_  x
52, 4ax-bdan 14107 . 2  |- BOUNDED  ( x  C_  { y }  /\  { y }  C_  x )
6 eqss 3168 . 2  |-  ( x  =  { y }  <-> 
( x  C_  { y }  /\  { y }  C_  x )
)
75, 6bd0r 14117 1  |- BOUNDED  x  =  {
y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353    C_ wss 3127   {csn 3589  BOUNDED wbd 14104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-bd0 14105  ax-bdan 14107  ax-bdal 14110  ax-bdeq 14112  ax-bdel 14113  ax-bdsb 14114
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-sn 3595  df-bdc 14133
This theorem is referenced by:  bdop  14167
  Copyright terms: Public domain W3C validator