Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | Unicode version |
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdvsn | BOUNDED |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 13905 | . . . 4 BOUNDED | |
2 | 1 | bdss 13899 | . . 3 BOUNDED |
3 | bdcv 13883 | . . . 4 BOUNDED | |
4 | 3 | bdsnss 13908 | . . 3 BOUNDED |
5 | 2, 4 | ax-bdan 13850 | . 2 BOUNDED |
6 | eqss 3162 | . 2 | |
7 | 5, 6 | bd0r 13860 | 1 BOUNDED |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wss 3121 csn 3583 BOUNDED wbd 13847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-bd0 13848 ax-bdan 13850 ax-bdal 13853 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-sn 3589 df-bdc 13876 |
This theorem is referenced by: bdop 13910 |
Copyright terms: Public domain | W3C validator |