Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn Unicode version

Theorem bdvsn 15810
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn  |- BOUNDED  x  =  {
y }
Distinct variable group:    x, y

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 15806 . . . 4  |- BOUNDED  { y }
21bdss 15800 . . 3  |- BOUNDED  x  C_  { y }
3 bdcv 15784 . . . 4  |- BOUNDED  x
43bdsnss 15809 . . 3  |- BOUNDED  { y }  C_  x
52, 4ax-bdan 15751 . 2  |- BOUNDED  ( x  C_  { y }  /\  { y }  C_  x )
6 eqss 3208 . 2  |-  ( x  =  { y }  <-> 
( x  C_  { y }  /\  { y }  C_  x )
)
75, 6bd0r 15761 1  |- BOUNDED  x  =  {
y }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373    C_ wss 3166   {csn 3633  BOUNDED wbd 15748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bd0 15749  ax-bdan 15751  ax-bdal 15754  ax-bdeq 15756  ax-bdel 15757  ax-bdsb 15758
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-sn 3639  df-bdc 15777
This theorem is referenced by:  bdop  15811
  Copyright terms: Public domain W3C validator