Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn GIF version

Theorem bdcsn 15670
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn BOUNDED {𝑥}

Proof of Theorem bdcsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 15620 . . 3 BOUNDED 𝑦 = 𝑥
21bdcab 15649 . 2 BOUNDED {𝑦𝑦 = 𝑥}
3 df-sn 3638 . 2 {𝑥} = {𝑦𝑦 = 𝑥}
42, 3bdceqir 15644 1 BOUNDED {𝑥}
Colors of variables: wff set class
Syntax hints:  {cab 2190  {csn 3632  BOUNDED wbdc 15640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-bd0 15613  ax-bdeq 15620  ax-bdsb 15622
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-cleq 2197  df-clel 2200  df-sn 3638  df-bdc 15641
This theorem is referenced by:  bdcpr  15671  bdctp  15672  bdvsn  15674  bdcsuc  15680
  Copyright terms: Public domain W3C validator