Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn GIF version

Theorem bdcsn 13905
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn BOUNDED {𝑥}

Proof of Theorem bdcsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 13855 . . 3 BOUNDED 𝑦 = 𝑥
21bdcab 13884 . 2 BOUNDED {𝑦𝑦 = 𝑥}
3 df-sn 3589 . 2 {𝑥} = {𝑦𝑦 = 𝑥}
42, 3bdceqir 13879 1 BOUNDED {𝑥}
Colors of variables: wff set class
Syntax hints:  {cab 2156  {csn 3583  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdeq 13855  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-sn 3589  df-bdc 13876
This theorem is referenced by:  bdcpr  13906  bdctp  13907  bdvsn  13909  bdcsuc  13915
  Copyright terms: Public domain W3C validator