Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn GIF version

Theorem bdcsn 16191
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn BOUNDED {𝑥}

Proof of Theorem bdcsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 16141 . . 3 BOUNDED 𝑦 = 𝑥
21bdcab 16170 . 2 BOUNDED {𝑦𝑦 = 𝑥}
3 df-sn 3672 . 2 {𝑥} = {𝑦𝑦 = 𝑥}
42, 3bdceqir 16165 1 BOUNDED {𝑥}
Colors of variables: wff set class
Syntax hints:  {cab 2215  {csn 3666  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16134  ax-bdeq 16141  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-sn 3672  df-bdc 16162
This theorem is referenced by:  bdcpr  16192  bdctp  16193  bdvsn  16195  bdcsuc  16201
  Copyright terms: Public domain W3C validator