| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsn | GIF version | ||
| Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcsn | ⊢ BOUNDED {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdeq 15550 | . . 3 ⊢ BOUNDED 𝑦 = 𝑥 | |
| 2 | 1 | bdcab 15579 | . 2 ⊢ BOUNDED {𝑦 ∣ 𝑦 = 𝑥} |
| 3 | df-sn 3629 | . 2 ⊢ {𝑥} = {𝑦 ∣ 𝑦 = 𝑥} | |
| 4 | 2, 3 | bdceqir 15574 | 1 ⊢ BOUNDED {𝑥} |
| Colors of variables: wff set class |
| Syntax hints: {cab 2182 {csn 3623 BOUNDED wbdc 15570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15543 ax-bdeq 15550 ax-bdsb 15552 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-sn 3629 df-bdc 15571 |
| This theorem is referenced by: bdcpr 15601 bdctp 15602 bdvsn 15604 bdcsuc 15610 |
| Copyright terms: Public domain | W3C validator |