Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsn GIF version

Theorem bdcsn 14975
Description: The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsn BOUNDED {𝑥}

Proof of Theorem bdcsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 14925 . . 3 BOUNDED 𝑦 = 𝑥
21bdcab 14954 . 2 BOUNDED {𝑦𝑦 = 𝑥}
3 df-sn 3610 . 2 {𝑥} = {𝑦𝑦 = 𝑥}
42, 3bdceqir 14949 1 BOUNDED {𝑥}
Colors of variables: wff set class
Syntax hints:  {cab 2173  {csn 3604  BOUNDED wbdc 14945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2169  ax-bd0 14918  ax-bdeq 14925  ax-bdsb 14927
This theorem depends on definitions:  df-bi 117  df-clab 2174  df-cleq 2180  df-clel 2183  df-sn 3610  df-bdc 14946
This theorem is referenced by:  bdcpr  14976  bdctp  14977  bdvsn  14979  bdcsuc  14985
  Copyright terms: Public domain W3C validator