Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw Unicode version

Theorem bdcpw 13711
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1  |- BOUNDED  A
Assertion
Ref Expression
bdcpw  |- BOUNDED  ~P A

Proof of Theorem bdcpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4  |- BOUNDED  A
21bdss 13706 . . 3  |- BOUNDED  x  C_  A
32bdcab 13691 . 2  |- BOUNDED  { x  |  x 
C_  A }
4 df-pw 3560 . 2  |-  ~P A  =  { x  |  x 
C_  A }
53, 4bdceqir 13686 1  |- BOUNDED  ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2151    C_ wss 3115   ~Pcpw 3558  BOUNDED wbdc 13682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13655  ax-bdal 13660  ax-bdsb 13664
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2448  df-in 3121  df-ss 3128  df-pw 3560  df-bdc 13683
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator