Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw Unicode version

Theorem bdcpw 15515
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1  |- BOUNDED  A
Assertion
Ref Expression
bdcpw  |- BOUNDED  ~P A

Proof of Theorem bdcpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4  |- BOUNDED  A
21bdss 15510 . . 3  |- BOUNDED  x  C_  A
32bdcab 15495 . 2  |- BOUNDED  { x  |  x 
C_  A }
4 df-pw 3607 . 2  |-  ~P A  =  { x  |  x 
C_  A }
53, 4bdceqir 15490 1  |- BOUNDED  ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2182    C_ wss 3157   ~Pcpw 3605  BOUNDED wbdc 15486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-bd0 15459  ax-bdal 15464  ax-bdsb 15468
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-in 3163  df-ss 3170  df-pw 3607  df-bdc 15487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator