Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcpw Unicode version

Theorem bdcpw 16232
Description: The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.)
Hypothesis
Ref Expression
bdcpw.1  |- BOUNDED  A
Assertion
Ref Expression
bdcpw  |- BOUNDED  ~P A

Proof of Theorem bdcpw
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 bdcpw.1 . . . 4  |- BOUNDED  A
21bdss 16227 . . 3  |- BOUNDED  x  C_  A
32bdcab 16212 . 2  |- BOUNDED  { x  |  x 
C_  A }
4 df-pw 3651 . 2  |-  ~P A  =  { x  |  x 
C_  A }
53, 4bdceqir 16207 1  |- BOUNDED  ~P A
Colors of variables: wff set class
Syntax hints:   {cab 2215    C_ wss 3197   ~Pcpw 3649  BOUNDED wbdc 16203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdal 16181  ax-bdsb 16185
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-ral 2513  df-in 3203  df-ss 3210  df-pw 3651  df-bdc 16204
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator