Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv Unicode version

Theorem bdcv 15410
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv  |- BOUNDED  x

Proof of Theorem bdcv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15383 . 2  |- BOUNDED  y  e.  x
21bdelir 15409 1  |- BOUNDED  x
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 15402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-bdel 15383
This theorem depends on definitions:  df-bi 117  df-bdc 15403
This theorem is referenced by:  bdvsn  15436  bdcsuc  15442  bdeqsuc  15443  bj-inex  15469  bj-nntrans  15513  bj-omtrans  15518  bj-inf2vn  15536  bj-omex2  15539  bj-nn0sucALT  15540
  Copyright terms: Public domain W3C validator