Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcv Unicode version

Theorem bdcv 15788
Description: A setvar is a bounded class. (Contributed by BJ, 3-Oct-2019.)
Assertion
Ref Expression
bdcv  |- BOUNDED  x

Proof of Theorem bdcv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ax-bdel 15761 . 2  |- BOUNDED  y  e.  x
21bdelir 15787 1  |- BOUNDED  x
Colors of variables: wff set class
Syntax hints:  BOUNDED wbdc 15780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1472  ax-bdel 15761
This theorem depends on definitions:  df-bi 117  df-bdc 15781
This theorem is referenced by:  bdvsn  15814  bdcsuc  15820  bdeqsuc  15821  bj-inex  15847  bj-nntrans  15891  bj-omtrans  15896  bj-inf2vn  15914  bj-omex2  15917  bj-nn0sucALT  15918
  Copyright terms: Public domain W3C validator