![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-suc | Unicode version |
Description: Define the successor of a class. When applied to an ordinal number, the successor means the same thing as "plus 1". Definition 7.22 of [TakeutiZaring] p. 41, who use "+ 1" to denote this function. Our definition is a generalization to classes. Although it is not conventional to use it with proper classes, it has no effect on a proper class (sucprc 4292). Some authors denote the successor operation with a prime (apostrophe-like) symbol, such as Definition 6 of [Suppes] p. 134 and the definition of successor in [Mendelson] p. 246 (who uses the symbol "Suc" as a predicate to mean "is a successor ordinal"). The definition of successor of [Enderton] p. 68 denotes the operation with a plus-sign superscript. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
df-suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA |
. . 3
![]() ![]() | |
2 | 1 | csuc 4245 |
. 2
![]() ![]() ![]() |
3 | 1 | csn 3491 |
. . 3
![]() ![]() ![]() ![]() |
4 | 1, 3 | cun 3033 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | wceq 1312 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: suceq 4282 elsuci 4283 elsucg 4284 elsuc2g 4285 nfsuc 4288 suc0 4291 sucprc 4292 unisuc 4293 unisucg 4294 sssucid 4295 iunsuc 4300 sucexb 4371 ordsucim 4374 ordsucss 4378 2ordpr 4397 orddif 4420 sucprcreg 4422 elnn 4477 omsinds 4493 tfrlemisucfn 6173 tfr1onlemsucfn 6189 tfrcllemsucfn 6202 rdgisuc1 6233 df2o3 6279 oasuc 6312 omsuc 6320 phplem1 6697 fiunsnnn 6726 unsnfi 6758 fiintim 6768 fidcenumlemrks 6791 fidcenumlemr 6793 pm54.43 6993 dju1en 7014 frecfzennn 10086 hashp1i 10443 ennnfonelemg 11755 ennnfonelemhdmp1 11761 ennnfonelemkh 11764 ennnfonelemhf1o 11765 bdcsuc 12761 bdeqsuc 12762 bj-sucexg 12803 bj-nntrans 12832 bj-nnelirr 12834 bj-omtrans 12837 nninfsellemdc 12887 nninfsellemsuc 12889 |
Copyright terms: Public domain | W3C validator |