Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 14928
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 14896 . . 3 BOUNDED 𝑥
2 bdcsn 14918 . . 3 BOUNDED {𝑥}
31, 2bdcun 14910 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4383 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 14892 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3139  {csn 3604  suc csuc 4377  BOUNDED wbdc 14888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-4 1520  ax-17 1536  ax-ial 1544  ax-ext 2169  ax-bd0 14861  ax-bdor 14864  ax-bdeq 14868  ax-bdel 14869  ax-bdsb 14870
This theorem depends on definitions:  df-bi 117  df-clab 2174  df-cleq 2180  df-clel 2183  df-un 3145  df-sn 3610  df-suc 4383  df-bdc 14889
This theorem is referenced by:  bdeqsuc  14929
  Copyright terms: Public domain W3C validator