Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 16201
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 16169 . . 3 BOUNDED 𝑥
2 bdcsn 16191 . . 3 BOUNDED {𝑥}
31, 2bdcun 16183 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4461 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 16165 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3195  {csn 3666  suc csuc 4455  BOUNDED wbdc 16161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211  ax-bd0 16134  ax-bdor 16137  ax-bdeq 16141  ax-bdel 16142  ax-bdsb 16143
This theorem depends on definitions:  df-bi 117  df-clab 2216  df-cleq 2222  df-clel 2225  df-un 3201  df-sn 3672  df-suc 4461  df-bdc 16162
This theorem is referenced by:  bdeqsuc  16202
  Copyright terms: Public domain W3C validator