Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 16015
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 15983 . . 3 BOUNDED 𝑥
2 bdcsn 16005 . . 3 BOUNDED {𝑥}
31, 2bdcun 15997 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4436 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 15979 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3172  {csn 3643  suc csuc 4430  BOUNDED wbdc 15975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2189  ax-bd0 15948  ax-bdor 15951  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957
This theorem depends on definitions:  df-bi 117  df-clab 2194  df-cleq 2200  df-clel 2203  df-un 3178  df-sn 3649  df-suc 4436  df-bdc 15976
This theorem is referenced by:  bdeqsuc  16016
  Copyright terms: Public domain W3C validator