Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 13883 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 13905 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 13897 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4356 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 13879 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3119 {csn 3583 suc csuc 4350 BOUNDED wbdc 13875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-17 1519 ax-ial 1527 ax-ext 2152 ax-bd0 13848 ax-bdor 13851 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 |
This theorem depends on definitions: df-bi 116 df-clab 2157 df-cleq 2163 df-clel 2166 df-un 3125 df-sn 3589 df-suc 4356 df-bdc 13876 |
This theorem is referenced by: bdeqsuc 13916 |
Copyright terms: Public domain | W3C validator |