Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 15749
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 15717 . . 3 BOUNDED 𝑥
2 bdcsn 15739 . . 3 BOUNDED {𝑥}
31, 2bdcun 15731 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4417 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 15713 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3163  {csn 3632  suc csuc 4411  BOUNDED wbdc 15709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532  ax-17 1548  ax-ial 1556  ax-ext 2186  ax-bd0 15682  ax-bdor 15685  ax-bdeq 15689  ax-bdel 15690  ax-bdsb 15691
This theorem depends on definitions:  df-bi 117  df-clab 2191  df-cleq 2197  df-clel 2200  df-un 3169  df-sn 3638  df-suc 4417  df-bdc 15710
This theorem is referenced by:  bdeqsuc  15750
  Copyright terms: Public domain W3C validator