| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version | ||
| Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcsuc | ⊢ BOUNDED suc 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcv 16169 | . . 3 ⊢ BOUNDED 𝑥 | |
| 2 | bdcsn 16191 | . . 3 ⊢ BOUNDED {𝑥} | |
| 3 | 1, 2 | bdcun 16183 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
| 4 | df-suc 4461 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
| 5 | 3, 4 | bdceqir 16165 | 1 ⊢ BOUNDED suc 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3195 {csn 3666 suc csuc 4455 BOUNDED wbdc 16161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 ax-bd0 16134 ax-bdor 16137 ax-bdeq 16141 ax-bdel 16142 ax-bdsb 16143 |
| This theorem depends on definitions: df-bi 117 df-clab 2216 df-cleq 2222 df-clel 2225 df-un 3201 df-sn 3672 df-suc 4461 df-bdc 16162 |
| This theorem is referenced by: bdeqsuc 16202 |
| Copyright terms: Public domain | W3C validator |