| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version | ||
| Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcsuc | ⊢ BOUNDED suc 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcv 15717 | . . 3 ⊢ BOUNDED 𝑥 | |
| 2 | bdcsn 15739 | . . 3 ⊢ BOUNDED {𝑥} | |
| 3 | 1, 2 | bdcun 15731 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
| 4 | df-suc 4417 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
| 5 | 3, 4 | bdceqir 15713 | 1 ⊢ BOUNDED suc 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3163 {csn 3632 suc csuc 4411 BOUNDED wbdc 15709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-ext 2186 ax-bd0 15682 ax-bdor 15685 ax-bdeq 15689 ax-bdel 15690 ax-bdsb 15691 |
| This theorem depends on definitions: df-bi 117 df-clab 2191 df-cleq 2197 df-clel 2200 df-un 3169 df-sn 3638 df-suc 4417 df-bdc 15710 |
| This theorem is referenced by: bdeqsuc 15750 |
| Copyright terms: Public domain | W3C validator |