![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 14685 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 14707 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 14699 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4373 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 14681 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3129 {csn 3594 suc csuc 4367 BOUNDED wbdc 14677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 ax-bd0 14650 ax-bdor 14653 ax-bdeq 14657 ax-bdel 14658 ax-bdsb 14659 |
This theorem depends on definitions: df-bi 117 df-clab 2164 df-cleq 2170 df-clel 2173 df-un 3135 df-sn 3600 df-suc 4373 df-bdc 14678 |
This theorem is referenced by: bdeqsuc 14718 |
Copyright terms: Public domain | W3C validator |