Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 13762
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 13730 . . 3 BOUNDED 𝑥
2 bdcsn 13752 . . 3 BOUNDED {𝑥}
31, 2bdcun 13744 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4349 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 13726 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3114  {csn 3576  suc csuc 4343  BOUNDED wbdc 13722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147  ax-bd0 13695  ax-bdor 13698  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-clab 2152  df-cleq 2158  df-clel 2161  df-un 3120  df-sn 3582  df-suc 4349  df-bdc 13723
This theorem is referenced by:  bdeqsuc  13763
  Copyright terms: Public domain W3C validator