Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 15634
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 15602 . . 3 BOUNDED 𝑥
2 bdcsn 15624 . . 3 BOUNDED {𝑥}
31, 2bdcun 15616 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4407 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 15598 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3155  {csn 3623  suc csuc 4401  BOUNDED wbdc 15594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-bd0 15567  ax-bdor 15570  ax-bdeq 15574  ax-bdel 15575  ax-bdsb 15576
This theorem depends on definitions:  df-bi 117  df-clab 2183  df-cleq 2189  df-clel 2192  df-un 3161  df-sn 3629  df-suc 4407  df-bdc 15595
This theorem is referenced by:  bdeqsuc  15635
  Copyright terms: Public domain W3C validator