| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version | ||
| Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdcsuc | ⊢ BOUNDED suc 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcv 15494 | . . 3 ⊢ BOUNDED 𝑥 | |
| 2 | bdcsn 15516 | . . 3 ⊢ BOUNDED {𝑥} | |
| 3 | 1, 2 | bdcun 15508 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
| 4 | df-suc 4406 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
| 5 | 3, 4 | bdceqir 15490 | 1 ⊢ BOUNDED suc 𝑥 |
| Colors of variables: wff set class |
| Syntax hints: ∪ cun 3155 {csn 3622 suc csuc 4400 BOUNDED wbdc 15486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 ax-bd0 15459 ax-bdor 15462 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 |
| This theorem depends on definitions: df-bi 117 df-clab 2183 df-cleq 2189 df-clel 2192 df-un 3161 df-sn 3628 df-suc 4406 df-bdc 15487 |
| This theorem is referenced by: bdeqsuc 15527 |
| Copyright terms: Public domain | W3C validator |