Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 15372
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 15340 . . 3 BOUNDED 𝑥
2 bdcsn 15362 . . 3 BOUNDED {𝑥}
31, 2bdcun 15354 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4402 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 15336 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3151  {csn 3618  suc csuc 4396  BOUNDED wbdc 15332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-bd0 15305  ax-bdor 15308  ax-bdeq 15312  ax-bdel 15313  ax-bdsb 15314
This theorem depends on definitions:  df-bi 117  df-clab 2180  df-cleq 2186  df-clel 2189  df-un 3157  df-sn 3624  df-suc 4402  df-bdc 15333
This theorem is referenced by:  bdeqsuc  15373
  Copyright terms: Public domain W3C validator