Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 13361 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 13383 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 13375 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4326 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 13357 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3096 {csn 3556 suc csuc 4320 BOUNDED wbdc 13353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-17 1503 ax-ial 1511 ax-ext 2136 ax-bd0 13326 ax-bdor 13329 ax-bdeq 13333 ax-bdel 13334 ax-bdsb 13335 |
This theorem depends on definitions: df-bi 116 df-clab 2141 df-cleq 2147 df-clel 2150 df-un 3102 df-sn 3562 df-suc 4326 df-bdc 13354 |
This theorem is referenced by: bdeqsuc 13394 |
Copyright terms: Public domain | W3C validator |