![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 14896 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 14918 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 14910 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4383 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 14892 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3139 {csn 3604 suc csuc 4377 BOUNDED wbdc 14888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1457 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-4 1520 ax-17 1536 ax-ial 1544 ax-ext 2169 ax-bd0 14861 ax-bdor 14864 ax-bdeq 14868 ax-bdel 14869 ax-bdsb 14870 |
This theorem depends on definitions: df-bi 117 df-clab 2174 df-cleq 2180 df-clel 2183 df-un 3145 df-sn 3610 df-suc 4383 df-bdc 14889 |
This theorem is referenced by: bdeqsuc 14929 |
Copyright terms: Public domain | W3C validator |