![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdcsuc | GIF version |
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdcsuc | ⊢ BOUNDED suc 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcv 15410 | . . 3 ⊢ BOUNDED 𝑥 | |
2 | bdcsn 15432 | . . 3 ⊢ BOUNDED {𝑥} | |
3 | 1, 2 | bdcun 15424 | . 2 ⊢ BOUNDED (𝑥 ∪ {𝑥}) |
4 | df-suc 4403 | . 2 ⊢ suc 𝑥 = (𝑥 ∪ {𝑥}) | |
5 | 3, 4 | bdceqir 15406 | 1 ⊢ BOUNDED suc 𝑥 |
Colors of variables: wff set class |
Syntax hints: ∪ cun 3152 {csn 3619 suc csuc 4397 BOUNDED wbdc 15402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-bd0 15375 ax-bdor 15378 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 |
This theorem depends on definitions: df-bi 117 df-clab 2180 df-cleq 2186 df-clel 2189 df-un 3158 df-sn 3625 df-suc 4403 df-bdc 15403 |
This theorem is referenced by: bdeqsuc 15443 |
Copyright terms: Public domain | W3C validator |