Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdcsuc GIF version

Theorem bdcsuc 13915
Description: The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdcsuc BOUNDED suc 𝑥

Proof of Theorem bdcsuc
StepHypRef Expression
1 bdcv 13883 . . 3 BOUNDED 𝑥
2 bdcsn 13905 . . 3 BOUNDED {𝑥}
31, 2bdcun 13897 . 2 BOUNDED (𝑥 ∪ {𝑥})
4 df-suc 4356 . 2 suc 𝑥 = (𝑥 ∪ {𝑥})
53, 4bdceqir 13879 1 BOUNDED suc 𝑥
Colors of variables: wff set class
Syntax hints:  cun 3119  {csn 3583  suc csuc 4350  BOUNDED wbdc 13875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-17 1519  ax-ial 1527  ax-ext 2152  ax-bd0 13848  ax-bdor 13851  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-clab 2157  df-cleq 2163  df-clel 2166  df-un 3125  df-sn 3589  df-suc 4356  df-bdc 13876
This theorem is referenced by:  bdeqsuc  13916
  Copyright terms: Public domain W3C validator