Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omex2 Unicode version

Theorem bj-omex2 16112
Description: Using bounded set induction and the strong axiom of infinity,  om is a set, that is, we recover ax-infvn 16076 (see bj-2inf 16073 for the equivalence of the latter with bj-omex 16077). (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
bj-omex2  |-  om  e.  _V

Proof of Theorem bj-omex2
Dummy variables  x  y  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-inf2 16111 . . 3  |-  E. a A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )
2 vex 2779 . . . 4  |-  a  e. 
_V
3 bdcv 15983 . . . . 5  |- BOUNDED  a
43bj-inf2vn 16109 . . . 4  |-  ( a  e.  _V  ->  ( A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )  -> 
a  =  om )
)
52, 4ax-mp 5 . . 3  |-  ( A. x ( x  e.  a  <->  ( x  =  (/)  \/  E. y  e.  a  x  =  suc  y ) )  -> 
a  =  om )
61, 5eximii 1626 . 2  |-  E. a 
a  =  om
76issetri 2786 1  |-  om  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710   A.wal 1371    = wceq 1373    e. wcel 2178   E.wrex 2487   _Vcvv 2776   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdim 15949  ax-bdor 15951  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-bdsetind 16103  ax-inf2 16111
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator