Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vn | Unicode version |
Description: A sufficient condition for to be a set. See bj-inf2vn2 13709 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vn.1 | BOUNDED |
Ref | Expression |
---|---|
bj-inf2vn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem1 13704 | . . 3 Ind | |
2 | biimp 117 | . . . . . . 7 | |
3 | 2 | alimi 1442 | . . . . . 6 |
4 | df-ral 2447 | . . . . . 6 | |
5 | 3, 4 | sylibr 133 | . . . . 5 |
6 | bj-inf2vn.1 | . . . . . 6 BOUNDED | |
7 | bdcv 13582 | . . . . . 6 BOUNDED | |
8 | 6, 7 | bj-inf2vnlem3 13706 | . . . . 5 Ind |
9 | 5, 8 | syl 14 | . . . 4 Ind |
10 | 9 | alrimiv 1861 | . . 3 Ind |
11 | 1, 10 | jca 304 | . 2 Ind Ind |
12 | bj-om 13671 | . 2 Ind Ind | |
13 | 11, 12 | syl5ibr 155 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wal 1340 wceq 1342 wcel 2135 wral 2442 wrex 2443 wss 3112 c0 3405 csuc 4338 com 4562 BOUNDED wbdc 13574 Ind wind 13660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-nul 4103 ax-pr 4182 ax-un 4406 ax-bd0 13547 ax-bdim 13548 ax-bdor 13550 ax-bdex 13553 ax-bdeq 13554 ax-bdel 13555 ax-bdsb 13556 ax-bdsep 13618 ax-bdsetind 13702 |
This theorem depends on definitions: df-bi 116 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ral 2447 df-rex 2448 df-rab 2451 df-v 2724 df-dif 3114 df-un 3116 df-in 3118 df-ss 3125 df-nul 3406 df-sn 3577 df-pr 3578 df-uni 3785 df-int 3820 df-suc 4344 df-iom 4563 df-bdc 13575 df-bj-ind 13661 |
This theorem is referenced by: bj-omex2 13711 bj-nn0sucALT 13712 |
Copyright terms: Public domain | W3C validator |