Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn Unicode version

Theorem bj-inf2vn 15620
Description: A sufficient condition for  om to be a set. See bj-inf2vn2 15621 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-inf2vn.1  |- BOUNDED  A
Assertion
Ref Expression
bj-inf2vn  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem bj-inf2vn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 15616 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
2 biimp 118 . . . . . . 7  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
32alimi 1469 . . . . . 6  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  e.  A  ->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) ) )
4 df-ral 2480 . . . . . 6  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  <->  A. x
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
53, 4sylibr 134 . . . . 5  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )
6 bj-inf2vn.1 . . . . . 6  |- BOUNDED  A
7 bdcv 15494 . . . . . 6  |- BOUNDED  z
86, 7bj-inf2vnlem3 15618 . . . . 5  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  z  ->  A  C_  z ) )
95, 8syl 14 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  z  ->  A  C_  z ) )
109alrimiv 1888 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z (Ind  z  ->  A  C_  z ) )
111, 10jca 306 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  A  /\  A. z (Ind  z  ->  A 
C_  z ) ) )
12 bj-om 15583 . 2  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. z (Ind  z  ->  A  C_  z
) ) ) )
1311, 12imbitrrid 156 1  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   (/)c0 3450   suc csuc 4400   omcom 4626  BOUNDED wbdc 15486  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdim 15460  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530  ax-bdsetind 15614
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-omex2  15623  bj-nn0sucALT  15624
  Copyright terms: Public domain W3C validator