Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn Unicode version

Theorem bj-inf2vn 14866
Description: A sufficient condition for  om to be a set. See bj-inf2vn2 14867 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-inf2vn.1  |- BOUNDED  A
Assertion
Ref Expression
bj-inf2vn  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem bj-inf2vn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 14862 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
2 biimp 118 . . . . . . 7  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
32alimi 1455 . . . . . 6  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  e.  A  ->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) ) )
4 df-ral 2460 . . . . . 6  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  <->  A. x
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
53, 4sylibr 134 . . . . 5  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )
6 bj-inf2vn.1 . . . . . 6  |- BOUNDED  A
7 bdcv 14740 . . . . . 6  |- BOUNDED  z
86, 7bj-inf2vnlem3 14864 . . . . 5  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  z  ->  A  C_  z ) )
95, 8syl 14 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  z  ->  A  C_  z ) )
109alrimiv 1874 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z (Ind  z  ->  A  C_  z ) )
111, 10jca 306 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  A  /\  A. z (Ind  z  ->  A 
C_  z ) ) )
12 bj-om 14829 . 2  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. z (Ind  z  ->  A  C_  z
) ) ) )
1311, 12imbitrrid 156 1  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708   A.wal 1351    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    C_ wss 3131   (/)c0 3424   suc csuc 4367   omcom 4591  BOUNDED wbdc 14732  Ind wind 14818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-nul 4131  ax-pr 4211  ax-un 4435  ax-bd0 14705  ax-bdim 14706  ax-bdor 14708  ax-bdex 14711  ax-bdeq 14712  ax-bdel 14713  ax-bdsb 14714  ax-bdsep 14776  ax-bdsetind 14860
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592  df-bdc 14733  df-bj-ind 14819
This theorem is referenced by:  bj-omex2  14869  bj-nn0sucALT  14870
  Copyright terms: Public domain W3C validator