Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn Unicode version

Theorem bj-inf2vn 15184
Description: A sufficient condition for  om to be a set. See bj-inf2vn2 15185 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-inf2vn.1  |- BOUNDED  A
Assertion
Ref Expression
bj-inf2vn  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Distinct variable group:    x, y, A
Allowed substitution hints:    V( x, y)

Proof of Theorem bj-inf2vn
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 15180 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> Ind  A )
2 biimp 118 . . . . . . 7  |-  ( ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
32alimi 1466 . . . . . 6  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x ( x  e.  A  ->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) ) )
4 df-ral 2473 . . . . . 6  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  <->  A. x
( x  e.  A  ->  ( x  =  (/)  \/ 
E. y  e.  A  x  =  suc  y ) ) )
53, 4sylibr 134 . . . . 5  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. x  e.  A  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )
6 bj-inf2vn.1 . . . . . 6  |- BOUNDED  A
7 bdcv 15058 . . . . . 6  |- BOUNDED  z
86, 7bj-inf2vnlem3 15182 . . . . 5  |-  ( A. x  e.  A  (
x  =  (/)  \/  E. y  e.  A  x  =  suc  y )  -> 
(Ind  z  ->  A  C_  z ) )
95, 8syl 14 . . . 4  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  z  ->  A  C_  z ) )
109alrimiv 1885 . . 3  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A. z (Ind  z  ->  A  C_  z ) )
111, 10jca 306 . 2  |-  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  -> 
(Ind  A  /\  A. z (Ind  z  ->  A 
C_  z ) ) )
12 bj-om 15147 . 2  |-  ( A  e.  V  ->  ( A  =  om  <->  (Ind  A  /\  A. z (Ind  z  ->  A  C_  z
) ) ) )
1311, 12imbitrrid 156 1  |-  ( A  e.  V  ->  ( A. x ( x  e.  A  <->  ( x  =  (/)  \/  E. y  e.  A  x  =  suc  y ) )  ->  A  =  om )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709   A.wal 1362    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469    C_ wss 3144   (/)c0 3437   suc csuc 4383   omcom 4607  BOUNDED wbdc 15050  Ind wind 15136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-nul 4144  ax-pr 4227  ax-un 4451  ax-bd0 15023  ax-bdim 15024  ax-bdor 15026  ax-bdex 15029  ax-bdeq 15030  ax-bdel 15031  ax-bdsb 15032  ax-bdsep 15094  ax-bdsetind 15178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-sn 3613  df-pr 3614  df-uni 3825  df-int 3860  df-suc 4389  df-iom 4608  df-bdc 15051  df-bj-ind 15137
This theorem is referenced by:  bj-omex2  15187  bj-nn0sucALT  15188
  Copyright terms: Public domain W3C validator