| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version | ||
| Description: The set  
       The idea is to use bounded induction with the formula   | 
| Ref | Expression | 
|---|---|
| bj-omtrans | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-omex 15588 | 
. . 3
 | |
| 2 | sseq2 3207 | 
. . . . . 6
 | |
| 3 | sseq2 3207 | 
. . . . . 6
 | |
| 4 | 2, 3 | imbi12d 234 | 
. . . . 5
 | 
| 5 | 4 | ralbidv 2497 | 
. . . 4
 | 
| 6 | sseq2 3207 | 
. . . . 5
 | |
| 7 | 6 | imbi2d 230 | 
. . . 4
 | 
| 8 | 5, 7 | imbi12d 234 | 
. . 3
 | 
| 9 | 0ss 3489 | 
. . . 4
 | |
| 10 | bdcv 15494 | 
. . . . . 6
 | |
| 11 | 10 | bdss 15510 | 
. . . . 5
 | 
| 12 | nfv 1542 | 
. . . . 5
 | |
| 13 | nfv 1542 | 
. . . . 5
 | |
| 14 | nfv 1542 | 
. . . . 5
 | |
| 15 | sseq1 3206 | 
. . . . . 6
 | |
| 16 | 15 | biimprd 158 | 
. . . . 5
 | 
| 17 | sseq1 3206 | 
. . . . . 6
 | |
| 18 | 17 | biimpd 144 | 
. . . . 5
 | 
| 19 | sseq1 3206 | 
. . . . . 6
 | |
| 20 | 19 | biimprd 158 | 
. . . . 5
 | 
| 21 | nfcv 2339 | 
. . . . 5
 | |
| 22 | nfv 1542 | 
. . . . 5
 | |
| 23 | sseq1 3206 | 
. . . . . 6
 | |
| 24 | 23 | biimpd 144 | 
. . . . 5
 | 
| 25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 15594 | 
. . . 4
 | 
| 26 | 9, 25 | mpan 424 | 
. . 3
 | 
| 27 | 1, 8, 26 | vtocl 2818 | 
. 2
 | 
| 28 | df-suc 4406 | 
. . . 4
 | |
| 29 | simpr 110 | 
. . . . 5
 | |
| 30 | simpl 109 | 
. . . . . 6
 | |
| 31 | 30 | snssd 3767 | 
. . . . 5
 | 
| 32 | 29, 31 | unssd 3339 | 
. . . 4
 | 
| 33 | 28, 32 | eqsstrid 3229 | 
. . 3
 | 
| 34 | 33 | ex 115 | 
. 2
 | 
| 35 | 27, 34 | mprg 2554 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4159 ax-pr 4242 ax-un 4468 ax-bd0 15459 ax-bdor 15462 ax-bdal 15464 ax-bdex 15465 ax-bdeq 15466 ax-bdel 15467 ax-bdsb 15468 ax-bdsep 15530 ax-infvn 15587 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 df-bdc 15487 df-bj-ind 15573 | 
| This theorem is referenced by: bj-omtrans2 15603 bj-nnord 15604 bj-nn0suc 15610 | 
| Copyright terms: Public domain | W3C validator |