Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version |
Description: The set is transitive. A
natural number is included in
.
Constructive proof of elnn 4583.
The idea is to use bounded induction with the formula . This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omtrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omex 13824 | . . 3 | |
2 | sseq2 3166 | . . . . . 6 | |
3 | sseq2 3166 | . . . . . 6 | |
4 | 2, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | ralbidv 2466 | . . . 4 |
6 | sseq2 3166 | . . . . 5 | |
7 | 6 | imbi2d 229 | . . . 4 |
8 | 5, 7 | imbi12d 233 | . . 3 |
9 | 0ss 3447 | . . . 4 | |
10 | bdcv 13730 | . . . . . 6 BOUNDED | |
11 | 10 | bdss 13746 | . . . . 5 BOUNDED |
12 | nfv 1516 | . . . . 5 | |
13 | nfv 1516 | . . . . 5 | |
14 | nfv 1516 | . . . . 5 | |
15 | sseq1 3165 | . . . . . 6 | |
16 | 15 | biimprd 157 | . . . . 5 |
17 | sseq1 3165 | . . . . . 6 | |
18 | 17 | biimpd 143 | . . . . 5 |
19 | sseq1 3165 | . . . . . 6 | |
20 | 19 | biimprd 157 | . . . . 5 |
21 | nfcv 2308 | . . . . 5 | |
22 | nfv 1516 | . . . . 5 | |
23 | sseq1 3165 | . . . . . 6 | |
24 | 23 | biimpd 143 | . . . . 5 |
25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 13830 | . . . 4 |
26 | 9, 25 | mpan 421 | . . 3 |
27 | 1, 8, 26 | vtocl 2780 | . 2 |
28 | df-suc 4349 | . . . 4 | |
29 | simpr 109 | . . . . 5 | |
30 | simpl 108 | . . . . . 6 | |
31 | 30 | snssd 3718 | . . . . 5 |
32 | 29, 31 | unssd 3298 | . . . 4 |
33 | 28, 32 | eqsstrid 3188 | . . 3 |
34 | 33 | ex 114 | . 2 |
35 | 27, 34 | mprg 2523 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cun 3114 wss 3116 c0 3409 csn 3576 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-nul 4108 ax-pr 4187 ax-un 4411 ax-bd0 13695 ax-bdor 13698 ax-bdal 13700 ax-bdex 13701 ax-bdeq 13702 ax-bdel 13703 ax-bdsb 13704 ax-bdsep 13766 ax-infvn 13823 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 df-bdc 13723 df-bj-ind 13809 |
This theorem is referenced by: bj-omtrans2 13839 bj-nnord 13840 bj-nn0suc 13846 |
Copyright terms: Public domain | W3C validator |