Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version |
Description: The set is transitive. A
natural number is included in
.
Constructive proof of elnn 4590.
The idea is to use bounded induction with the formula . This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omtrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omex 13977 | . . 3 | |
2 | sseq2 3171 | . . . . . 6 | |
3 | sseq2 3171 | . . . . . 6 | |
4 | 2, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | ralbidv 2470 | . . . 4 |
6 | sseq2 3171 | . . . . 5 | |
7 | 6 | imbi2d 229 | . . . 4 |
8 | 5, 7 | imbi12d 233 | . . 3 |
9 | 0ss 3453 | . . . 4 | |
10 | bdcv 13883 | . . . . . 6 BOUNDED | |
11 | 10 | bdss 13899 | . . . . 5 BOUNDED |
12 | nfv 1521 | . . . . 5 | |
13 | nfv 1521 | . . . . 5 | |
14 | nfv 1521 | . . . . 5 | |
15 | sseq1 3170 | . . . . . 6 | |
16 | 15 | biimprd 157 | . . . . 5 |
17 | sseq1 3170 | . . . . . 6 | |
18 | 17 | biimpd 143 | . . . . 5 |
19 | sseq1 3170 | . . . . . 6 | |
20 | 19 | biimprd 157 | . . . . 5 |
21 | nfcv 2312 | . . . . 5 | |
22 | nfv 1521 | . . . . 5 | |
23 | sseq1 3170 | . . . . . 6 | |
24 | 23 | biimpd 143 | . . . . 5 |
25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 13983 | . . . 4 |
26 | 9, 25 | mpan 422 | . . 3 |
27 | 1, 8, 26 | vtocl 2784 | . 2 |
28 | df-suc 4356 | . . . 4 | |
29 | simpr 109 | . . . . 5 | |
30 | simpl 108 | . . . . . 6 | |
31 | 30 | snssd 3725 | . . . . 5 |
32 | 29, 31 | unssd 3303 | . . . 4 |
33 | 28, 32 | eqsstrid 3193 | . . 3 |
34 | 33 | ex 114 | . 2 |
35 | 27, 34 | mprg 2527 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cun 3119 wss 3121 c0 3414 csn 3583 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdor 13851 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-omtrans2 13992 bj-nnord 13993 bj-nn0suc 13999 |
Copyright terms: Public domain | W3C validator |