Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans Unicode version

Theorem bj-omtrans 16091
Description: The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4672.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-omtrans  |-  ( A  e.  om  ->  A  C_ 
om )

Proof of Theorem bj-omtrans
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 16077 . . 3  |-  om  e.  _V
2 sseq2 3225 . . . . . 6  |-  ( a  =  om  ->  (
y  C_  a  <->  y  C_  om ) )
3 sseq2 3225 . . . . . 6  |-  ( a  =  om  ->  ( suc  y  C_  a  <->  suc  y  C_  om ) )
42, 3imbi12d 234 . . . . 5  |-  ( a  =  om  ->  (
( y  C_  a  ->  suc  y  C_  a
)  <->  ( y  C_  om 
->  suc  y  C_  om )
) )
54ralbidv 2508 . . . 4  |-  ( a  =  om  ->  ( A. y  e.  om  ( y  C_  a  ->  suc  y  C_  a
)  <->  A. y  e.  om  ( y  C_  om  ->  suc  y  C_  om )
) )
6 sseq2 3225 . . . . 5  |-  ( a  =  om  ->  ( A  C_  a  <->  A  C_  om )
)
76imbi2d 230 . . . 4  |-  ( a  =  om  ->  (
( A  e.  om  ->  A  C_  a )  <->  ( A  e.  om  ->  A 
C_  om ) ) )
85, 7imbi12d 234 . . 3  |-  ( a  =  om  ->  (
( A. y  e. 
om  ( y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A 
C_  a ) )  <-> 
( A. y  e. 
om  ( y  C_  om 
->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
) ) )
9 0ss 3507 . . . 4  |-  (/)  C_  a
10 bdcv 15983 . . . . . 6  |- BOUNDED  a
1110bdss 15999 . . . . 5  |- BOUNDED  x  C_  a
12 nfv 1552 . . . . 5  |-  F/ x (/)  C_  a
13 nfv 1552 . . . . 5  |-  F/ x  y  C_  a
14 nfv 1552 . . . . 5  |-  F/ x  suc  y  C_  a
15 sseq1 3224 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  a  <->  (/)  C_  a
) )
1615biimprd 158 . . . . 5  |-  ( x  =  (/)  ->  ( (/)  C_  a  ->  x  C_  a
) )
17 sseq1 3224 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  a  <->  y  C_  a ) )
1817biimpd 144 . . . . 5  |-  ( x  =  y  ->  (
x  C_  a  ->  y 
C_  a ) )
19 sseq1 3224 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  C_  a  <->  suc  y  C_  a )
)
2019biimprd 158 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  y  C_  a  ->  x  C_  a
) )
21 nfcv 2350 . . . . 5  |-  F/_ x A
22 nfv 1552 . . . . 5  |-  F/ x  A  C_  a
23 sseq1 3224 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  a  <->  A  C_  a
) )
2423biimpd 144 . . . . 5  |-  ( x  =  A  ->  (
x  C_  a  ->  A 
C_  a ) )
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 16083 . . . 4  |-  ( (
(/)  C_  a  /\  A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )
)  ->  ( A  e.  om  ->  A  C_  a
) )
269, 25mpan 424 . . 3  |-  ( A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A  C_  a )
)
271, 8, 26vtocl 2832 . 2  |-  ( A. y  e.  om  (
y  C_  om  ->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
)
28 df-suc 4436 . . . 4  |-  suc  y  =  ( y  u. 
{ y } )
29 simpr 110 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  C_  om )
30 simpl 109 . . . . . 6  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  e.  om )
3130snssd 3789 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  ->  { y }  C_  om )
3229, 31unssd 3357 . . . 4  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
( y  u.  {
y } )  C_  om )
3328, 32eqsstrid 3247 . . 3  |-  ( ( y  e.  om  /\  y  C_  om )  ->  suc  y  C_  om )
3433ex 115 . 2  |-  ( y  e.  om  ->  (
y  C_  om  ->  suc  y  C_  om )
)
3527, 34mprg 2565 1  |-  ( A  e.  om  ->  A  C_ 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-nul 4186  ax-pr 4269  ax-un 4498  ax-bd0 15948  ax-bdor 15951  ax-bdal 15953  ax-bdex 15954  ax-bdeq 15955  ax-bdel 15956  ax-bdsb 15957  ax-bdsep 16019  ax-infvn 16076
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657  df-bdc 15976  df-bj-ind 16062
This theorem is referenced by:  bj-omtrans2  16092  bj-nnord  16093  bj-nn0suc  16099
  Copyright terms: Public domain W3C validator