| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version | ||
| Description: The set
The idea is to use bounded induction with the formula |
| Ref | Expression |
|---|---|
| bj-omtrans |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omex 15672 |
. . 3
| |
| 2 | sseq2 3208 |
. . . . . 6
| |
| 3 | sseq2 3208 |
. . . . . 6
| |
| 4 | 2, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | ralbidv 2497 |
. . . 4
|
| 6 | sseq2 3208 |
. . . . 5
| |
| 7 | 6 | imbi2d 230 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | 0ss 3490 |
. . . 4
| |
| 10 | bdcv 15578 |
. . . . . 6
| |
| 11 | 10 | bdss 15594 |
. . . . 5
|
| 12 | nfv 1542 |
. . . . 5
| |
| 13 | nfv 1542 |
. . . . 5
| |
| 14 | nfv 1542 |
. . . . 5
| |
| 15 | sseq1 3207 |
. . . . . 6
| |
| 16 | 15 | biimprd 158 |
. . . . 5
|
| 17 | sseq1 3207 |
. . . . . 6
| |
| 18 | 17 | biimpd 144 |
. . . . 5
|
| 19 | sseq1 3207 |
. . . . . 6
| |
| 20 | 19 | biimprd 158 |
. . . . 5
|
| 21 | nfcv 2339 |
. . . . 5
| |
| 22 | nfv 1542 |
. . . . 5
| |
| 23 | sseq1 3207 |
. . . . . 6
| |
| 24 | 23 | biimpd 144 |
. . . . 5
|
| 25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 15678 |
. . . 4
|
| 26 | 9, 25 | mpan 424 |
. . 3
|
| 27 | 1, 8, 26 | vtocl 2818 |
. 2
|
| 28 | df-suc 4407 |
. . . 4
| |
| 29 | simpr 110 |
. . . . 5
| |
| 30 | simpl 109 |
. . . . . 6
| |
| 31 | 30 | snssd 3768 |
. . . . 5
|
| 32 | 29, 31 | unssd 3340 |
. . . 4
|
| 33 | 28, 32 | eqsstrid 3230 |
. . 3
|
| 34 | 33 | ex 115 |
. 2
|
| 35 | 27, 34 | mprg 2554 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-bd0 15543 ax-bdor 15546 ax-bdal 15548 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: bj-omtrans2 15687 bj-nnord 15688 bj-nn0suc 15694 |
| Copyright terms: Public domain | W3C validator |