Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-omtrans Unicode version

Theorem bj-omtrans 13477
Description: The set  om is transitive. A natural number is included in  om. Constructive proof of elnn 4559.

The idea is to use bounded induction with the formula  x  C_ 
om. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with  x  C_  a and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
bj-omtrans  |-  ( A  e.  om  ->  A  C_ 
om )

Proof of Theorem bj-omtrans
Dummy variables  x  a  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-omex 13463 . . 3  |-  om  e.  _V
2 sseq2 3148 . . . . . 6  |-  ( a  =  om  ->  (
y  C_  a  <->  y  C_  om ) )
3 sseq2 3148 . . . . . 6  |-  ( a  =  om  ->  ( suc  y  C_  a  <->  suc  y  C_  om ) )
42, 3imbi12d 233 . . . . 5  |-  ( a  =  om  ->  (
( y  C_  a  ->  suc  y  C_  a
)  <->  ( y  C_  om 
->  suc  y  C_  om )
) )
54ralbidv 2454 . . . 4  |-  ( a  =  om  ->  ( A. y  e.  om  ( y  C_  a  ->  suc  y  C_  a
)  <->  A. y  e.  om  ( y  C_  om  ->  suc  y  C_  om )
) )
6 sseq2 3148 . . . . 5  |-  ( a  =  om  ->  ( A  C_  a  <->  A  C_  om )
)
76imbi2d 229 . . . 4  |-  ( a  =  om  ->  (
( A  e.  om  ->  A  C_  a )  <->  ( A  e.  om  ->  A 
C_  om ) ) )
85, 7imbi12d 233 . . 3  |-  ( a  =  om  ->  (
( A. y  e. 
om  ( y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A 
C_  a ) )  <-> 
( A. y  e. 
om  ( y  C_  om 
->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
) ) )
9 0ss 3428 . . . 4  |-  (/)  C_  a
10 bdcv 13369 . . . . . 6  |- BOUNDED  a
1110bdss 13385 . . . . 5  |- BOUNDED  x  C_  a
12 nfv 1505 . . . . 5  |-  F/ x (/)  C_  a
13 nfv 1505 . . . . 5  |-  F/ x  y  C_  a
14 nfv 1505 . . . . 5  |-  F/ x  suc  y  C_  a
15 sseq1 3147 . . . . . 6  |-  ( x  =  (/)  ->  ( x 
C_  a  <->  (/)  C_  a
) )
1615biimprd 157 . . . . 5  |-  ( x  =  (/)  ->  ( (/)  C_  a  ->  x  C_  a
) )
17 sseq1 3147 . . . . . 6  |-  ( x  =  y  ->  (
x  C_  a  <->  y  C_  a ) )
1817biimpd 143 . . . . 5  |-  ( x  =  y  ->  (
x  C_  a  ->  y 
C_  a ) )
19 sseq1 3147 . . . . . 6  |-  ( x  =  suc  y  -> 
( x  C_  a  <->  suc  y  C_  a )
)
2019biimprd 157 . . . . 5  |-  ( x  =  suc  y  -> 
( suc  y  C_  a  ->  x  C_  a
) )
21 nfcv 2296 . . . . 5  |-  F/_ x A
22 nfv 1505 . . . . 5  |-  F/ x  A  C_  a
23 sseq1 3147 . . . . . 6  |-  ( x  =  A  ->  (
x  C_  a  <->  A  C_  a
) )
2423biimpd 143 . . . . 5  |-  ( x  =  A  ->  (
x  C_  a  ->  A 
C_  a ) )
2511, 12, 13, 14, 16, 18, 20, 21, 22, 24bj-bdfindisg 13469 . . . 4  |-  ( (
(/)  C_  a  /\  A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )
)  ->  ( A  e.  om  ->  A  C_  a
) )
269, 25mpan 421 . . 3  |-  ( A. y  e.  om  (
y  C_  a  ->  suc  y  C_  a )  ->  ( A  e.  om  ->  A  C_  a )
)
271, 8, 26vtocl 2763 . 2  |-  ( A. y  e.  om  (
y  C_  om  ->  suc  y  C_  om )  ->  ( A  e.  om  ->  A  C_  om )
)
28 df-suc 4326 . . . 4  |-  suc  y  =  ( y  u. 
{ y } )
29 simpr 109 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  C_  om )
30 simpl 108 . . . . . 6  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
y  e.  om )
3130snssd 3697 . . . . 5  |-  ( ( y  e.  om  /\  y  C_  om )  ->  { y }  C_  om )
3229, 31unssd 3279 . . . 4  |-  ( ( y  e.  om  /\  y  C_  om )  -> 
( y  u.  {
y } )  C_  om )
3328, 32eqsstrid 3170 . . 3  |-  ( ( y  e.  om  /\  y  C_  om )  ->  suc  y  C_  om )
3433ex 114 . 2  |-  ( y  e.  om  ->  (
y  C_  om  ->  suc  y  C_  om )
)
3527, 34mprg 2511 1  |-  ( A  e.  om  ->  A  C_ 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125   A.wral 2432    u. cun 3096    C_ wss 3098   (/)c0 3390   {csn 3556   suc csuc 4320   omcom 4543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-nul 4086  ax-pr 4164  ax-un 4388  ax-bd0 13334  ax-bdor 13337  ax-bdal 13339  ax-bdex 13340  ax-bdeq 13341  ax-bdel 13342  ax-bdsb 13343  ax-bdsep 13405  ax-infvn 13462
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-sn 3562  df-pr 3563  df-uni 3769  df-int 3804  df-suc 4326  df-iom 4544  df-bdc 13362  df-bj-ind 13448
This theorem is referenced by:  bj-omtrans2  13478  bj-nnord  13479  bj-nn0suc  13485
  Copyright terms: Public domain W3C validator