Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version |
Description: The set is transitive. A
natural number is included in
.
Constructive proof of elnn 4559.
The idea is to use bounded induction with the formula . This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-omtrans |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omex 13463 | . . 3 | |
2 | sseq2 3148 | . . . . . 6 | |
3 | sseq2 3148 | . . . . . 6 | |
4 | 2, 3 | imbi12d 233 | . . . . 5 |
5 | 4 | ralbidv 2454 | . . . 4 |
6 | sseq2 3148 | . . . . 5 | |
7 | 6 | imbi2d 229 | . . . 4 |
8 | 5, 7 | imbi12d 233 | . . 3 |
9 | 0ss 3428 | . . . 4 | |
10 | bdcv 13369 | . . . . . 6 BOUNDED | |
11 | 10 | bdss 13385 | . . . . 5 BOUNDED |
12 | nfv 1505 | . . . . 5 | |
13 | nfv 1505 | . . . . 5 | |
14 | nfv 1505 | . . . . 5 | |
15 | sseq1 3147 | . . . . . 6 | |
16 | 15 | biimprd 157 | . . . . 5 |
17 | sseq1 3147 | . . . . . 6 | |
18 | 17 | biimpd 143 | . . . . 5 |
19 | sseq1 3147 | . . . . . 6 | |
20 | 19 | biimprd 157 | . . . . 5 |
21 | nfcv 2296 | . . . . 5 | |
22 | nfv 1505 | . . . . 5 | |
23 | sseq1 3147 | . . . . . 6 | |
24 | 23 | biimpd 143 | . . . . 5 |
25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 13469 | . . . 4 |
26 | 9, 25 | mpan 421 | . . 3 |
27 | 1, 8, 26 | vtocl 2763 | . 2 |
28 | df-suc 4326 | . . . 4 | |
29 | simpr 109 | . . . . 5 | |
30 | simpl 108 | . . . . . 6 | |
31 | 30 | snssd 3697 | . . . . 5 |
32 | 29, 31 | unssd 3279 | . . . 4 |
33 | 28, 32 | eqsstrid 3170 | . . 3 |
34 | 33 | ex 114 | . 2 |
35 | 27, 34 | mprg 2511 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 wral 2432 cun 3096 wss 3098 c0 3390 csn 3556 csuc 4320 com 4543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-nul 4086 ax-pr 4164 ax-un 4388 ax-bd0 13334 ax-bdor 13337 ax-bdal 13339 ax-bdex 13340 ax-bdeq 13341 ax-bdel 13342 ax-bdsb 13343 ax-bdsep 13405 ax-infvn 13462 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-sn 3562 df-pr 3563 df-uni 3769 df-int 3804 df-suc 4326 df-iom 4544 df-bdc 13362 df-bj-ind 13448 |
This theorem is referenced by: bj-omtrans2 13478 bj-nnord 13479 bj-nn0suc 13485 |
Copyright terms: Public domain | W3C validator |