| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-omtrans | Unicode version | ||
| Description: The set
The idea is to use bounded induction with the formula |
| Ref | Expression |
|---|---|
| bj-omtrans |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-omex 16077 |
. . 3
| |
| 2 | sseq2 3225 |
. . . . . 6
| |
| 3 | sseq2 3225 |
. . . . . 6
| |
| 4 | 2, 3 | imbi12d 234 |
. . . . 5
|
| 5 | 4 | ralbidv 2508 |
. . . 4
|
| 6 | sseq2 3225 |
. . . . 5
| |
| 7 | 6 | imbi2d 230 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | 0ss 3507 |
. . . 4
| |
| 10 | bdcv 15983 |
. . . . . 6
| |
| 11 | 10 | bdss 15999 |
. . . . 5
|
| 12 | nfv 1552 |
. . . . 5
| |
| 13 | nfv 1552 |
. . . . 5
| |
| 14 | nfv 1552 |
. . . . 5
| |
| 15 | sseq1 3224 |
. . . . . 6
| |
| 16 | 15 | biimprd 158 |
. . . . 5
|
| 17 | sseq1 3224 |
. . . . . 6
| |
| 18 | 17 | biimpd 144 |
. . . . 5
|
| 19 | sseq1 3224 |
. . . . . 6
| |
| 20 | 19 | biimprd 158 |
. . . . 5
|
| 21 | nfcv 2350 |
. . . . 5
| |
| 22 | nfv 1552 |
. . . . 5
| |
| 23 | sseq1 3224 |
. . . . . 6
| |
| 24 | 23 | biimpd 144 |
. . . . 5
|
| 25 | 11, 12, 13, 14, 16, 18, 20, 21, 22, 24 | bj-bdfindisg 16083 |
. . . 4
|
| 26 | 9, 25 | mpan 424 |
. . 3
|
| 27 | 1, 8, 26 | vtocl 2832 |
. 2
|
| 28 | df-suc 4436 |
. . . 4
| |
| 29 | simpr 110 |
. . . . 5
| |
| 30 | simpl 109 |
. . . . . 6
| |
| 31 | 30 | snssd 3789 |
. . . . 5
|
| 32 | 29, 31 | unssd 3357 |
. . . 4
|
| 33 | 28, 32 | eqsstrid 3247 |
. . 3
|
| 34 | 33 | ex 115 |
. 2
|
| 35 | 27, 34 | mprg 2565 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-bd0 15948 ax-bdor 15951 ax-bdal 15953 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: bj-omtrans2 16092 bj-nnord 16093 bj-nn0suc 16099 |
| Copyright terms: Public domain | W3C validator |