Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > if0ab | Unicode version |
Description: Expression of a
conditional class as a class abstraction when the False
alternative is the empty class: in that case, the conditional class is
the extension, in the True alternative, of the condition.
Remark: a consequence which could be formalized is the inclusion and therefore, using elpwg 3567, , from which fmelpw1o 13688 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.) |
Ref | Expression |
---|---|
if0ab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noel 3413 | . . . . . 6 | |
2 | 1 | intnanr 920 | . . . . 5 |
3 | 2 | biorfi 736 | . . . 4 |
4 | 3 | bicomi 131 | . . 3 |
5 | 4 | abbii 2282 | . 2 |
6 | df-if 3521 | . 2 | |
7 | df-rab 2453 | . 2 | |
8 | 5, 6, 7 | 3eqtr4i 2196 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wo 698 wceq 1343 wcel 2136 cab 2151 crab 2448 c0 3409 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-nul 3410 df-if 3521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |