Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  if0ab Unicode version

Theorem if0ab 16127
Description: Expression of a conditional class as a class abstraction when the False alternative is the empty class: in that case, the conditional class is the extension, in the True alternative, of the condition.

Remark: a consequence which could be formalized is the inclusion  |-  if (
ph ,  A ,  (/) )  C_  A and therefore, using elpwg 3657,  |-  ( A  e.  V  ->  if ( ph ,  A ,  (/) )  e.  ~P A
), from which fmelpw1o 7428 could be derived, yielding an alternative proof. (Contributed by BJ, 16-Aug-2024.)

Assertion
Ref Expression
if0ab  |-  if (
ph ,  A ,  (/) )  =  { x  e.  A  |  ph }
Distinct variable groups:    x, A    ph, x

Proof of Theorem if0ab
StepHypRef Expression
1 noel 3495 . . . . . 6  |-  -.  x  e.  (/)
21intnanr 935 . . . . 5  |-  -.  (
x  e.  (/)  /\  -.  ph )
32biorfi 751 . . . 4  |-  ( ( x  e.  A  /\  ph )  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  (/)  /\  -.  ph ) ) )
43bicomi 132 . . 3  |-  ( ( ( x  e.  A  /\  ph )  \/  (
x  e.  (/)  /\  -.  ph ) )  <->  ( x  e.  A  /\  ph )
)
54abbii 2345 . 2  |-  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  (/)  /\  -.  ph ) ) }  =  { x  |  (
x  e.  A  /\  ph ) }
6 df-if 3603 . 2  |-  if (
ph ,  A ,  (/) )  =  { x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  (/)  /\  -.  ph ) ) }
7 df-rab 2517 . 2  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
85, 6, 73eqtr4i 2260 1  |-  if (
ph ,  A ,  (/) )  =  { x  e.  A  |  ph }
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   (/)c0 3491   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-nul 3492  df-if 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator