ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3494
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3464 . . . 4  |-  -.  x  e.  (/)
21biorfi 748 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3315 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2176    u. cun 3164   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461
This theorem is referenced by:  un00  3507  disjssun  3524  difun2  3540  difdifdirss  3545  disjpr2  3697  prprc1  3741  diftpsn3  3774  iununir  4011  exmid1stab  4252  suc0  4458  sucprc  4459  fvun1  5645  fmptpr  5776  fvunsng  5778  fvsnun1  5781  fvsnun2  5782  fsnunfv  5785  fsnunres  5786  rdg0  6473  omv2  6551  unsnfidcex  7017  unfidisj  7019  undifdc  7021  ssfirab  7033  dju0en  7326  djuassen  7329  fzsuc2  10201  fseq1p1m1  10216  hashunlem  10949  ennnfonelem1  12778  setsresg  12870  setsslid  12883  lgsquadlem2  15555  fmelpw1o  15742
  Copyright terms: Public domain W3C validator