ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3442
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3413 . . . 4  |-  -.  x  e.  (/)
21biorfi 736 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 131 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3264 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-nul 3410
This theorem is referenced by:  un00  3455  disjssun  3472  difun2  3488  difdifdirss  3493  disjpr2  3640  prprc1  3684  diftpsn3  3714  iununir  3949  suc0  4389  sucprc  4390  fvun1  5552  fmptpr  5677  fvunsng  5679  fvsnun1  5682  fvsnun2  5683  fsnunfv  5686  fsnunres  5687  rdg0  6355  omv2  6433  unsnfidcex  6885  unfidisj  6887  undifdc  6889  ssfirab  6899  dju0en  7170  djuassen  7173  fzsuc2  10014  fseq1p1m1  10029  hashunlem  10717  ennnfonelem1  12340  setsresg  12432  setsslid  12444  fmelpw1o  13688  exmid1stab  13880
  Copyright terms: Public domain W3C validator