ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3484
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3454 . . . 4  |-  -.  x  e.  (/)
21biorfi 747 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3305 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   (/)c0 3450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451
This theorem is referenced by:  un00  3497  disjssun  3514  difun2  3530  difdifdirss  3535  disjpr2  3686  prprc1  3730  diftpsn3  3763  iununir  4000  exmid1stab  4241  suc0  4446  sucprc  4447  fvun1  5627  fmptpr  5754  fvunsng  5756  fvsnun1  5759  fvsnun2  5760  fsnunfv  5763  fsnunres  5764  rdg0  6445  omv2  6523  unsnfidcex  6981  unfidisj  6983  undifdc  6985  ssfirab  6997  dju0en  7281  djuassen  7284  fzsuc2  10154  fseq1p1m1  10169  hashunlem  10896  ennnfonelem1  12624  setsresg  12716  setsslid  12729  lgsquadlem2  15319  fmelpw1o  15452
  Copyright terms: Public domain W3C validator