| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | Unicode version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3472 |
. . . 4
| |
| 2 | 1 | biorfi 748 |
. . 3
|
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 3 | uneqri 3323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-dif 3176 df-un 3178 df-nul 3469 |
| This theorem is referenced by: un00 3515 disjssun 3532 difun2 3548 difdifdirss 3553 disjpr2 3707 prprc1 3751 diftpsn3 3785 iununir 4025 exmid1stab 4268 suc0 4476 sucprc 4477 fvun1 5668 fmptpr 5799 fvunsng 5801 fvsnun1 5804 fvsnun2 5805 fsnunfv 5808 fsnunres 5809 rdg0 6496 omv2 6574 unsnfidcex 7043 unfidisj 7045 undifdc 7047 ssfirab 7059 dju0en 7357 djuassen 7360 fmelpw1o 7393 fzsuc2 10236 fseq1p1m1 10251 hashunlem 10986 ennnfonelem1 12893 setsresg 12985 setsslid 12998 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |