| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | Unicode version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3495 |
. . . 4
| |
| 2 | 1 | biorfi 751 |
. . 3
|
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 3 | uneqri 3346 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-dif 3199 df-un 3201 df-nul 3492 |
| This theorem is referenced by: un00 3538 disjssun 3555 difun2 3571 difdifdirss 3576 disjpr2 3730 prprc1 3774 diftpsn3 3808 iununir 4048 exmid1stab 4291 suc0 4501 sucprc 4502 fvun1 5699 fmptpr 5830 fvunsng 5832 fvsnun1 5835 fvsnun2 5836 fsnunfv 5839 fsnunres 5840 rdg0 6531 omv2 6609 unsnfidcex 7078 unfidisj 7080 undifdc 7082 ssfirab 7094 dju0en 7392 djuassen 7395 fmelpw1o 7428 fzsuc2 10271 fseq1p1m1 10286 hashunlem 11021 ennnfonelem1 12973 setsresg 13065 setsslid 13078 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |