ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3502
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3472 . . . 4  |-  -.  x  e.  (/)
21biorfi 748 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3323 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 710    = wceq 1373    e. wcel 2178    u. cun 3172   (/)c0 3468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-nul 3469
This theorem is referenced by:  un00  3515  disjssun  3532  difun2  3548  difdifdirss  3553  disjpr2  3707  prprc1  3751  diftpsn3  3785  iununir  4025  exmid1stab  4268  suc0  4476  sucprc  4477  fvun1  5668  fmptpr  5799  fvunsng  5801  fvsnun1  5804  fvsnun2  5805  fsnunfv  5808  fsnunres  5809  rdg0  6496  omv2  6574  unsnfidcex  7043  unfidisj  7045  undifdc  7047  ssfirab  7059  dju0en  7357  djuassen  7360  fmelpw1o  7393  fzsuc2  10236  fseq1p1m1  10251  hashunlem  10986  ennnfonelem1  12893  setsresg  12985  setsslid  12998  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator