| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > un0 | Unicode version | ||
| Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| un0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel 3464 |
. . . 4
| |
| 2 | 1 | biorfi 748 |
. . 3
|
| 3 | 2 | bicomi 132 |
. 2
|
| 4 | 3 | uneqri 3315 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-dif 3168 df-un 3170 df-nul 3461 |
| This theorem is referenced by: un00 3507 disjssun 3524 difun2 3540 difdifdirss 3545 disjpr2 3697 prprc1 3741 diftpsn3 3774 iununir 4011 exmid1stab 4252 suc0 4458 sucprc 4459 fvun1 5645 fmptpr 5776 fvunsng 5778 fvsnun1 5781 fvsnun2 5782 fsnunfv 5785 fsnunres 5786 rdg0 6473 omv2 6551 unsnfidcex 7017 unfidisj 7019 undifdc 7021 ssfirab 7033 dju0en 7326 djuassen 7329 fzsuc2 10201 fseq1p1m1 10216 hashunlem 10949 ennnfonelem1 12778 setsresg 12870 setsslid 12883 lgsquadlem2 15555 fmelpw1o 15742 |
| Copyright terms: Public domain | W3C validator |