ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3481
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3451 . . . 4  |-  -.  x  e.  (/)
21biorfi 747 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3302 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3152   (/)c0 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3156  df-un 3158  df-nul 3448
This theorem is referenced by:  un00  3494  disjssun  3511  difun2  3527  difdifdirss  3532  disjpr2  3683  prprc1  3727  diftpsn3  3760  iununir  3997  exmid1stab  4238  suc0  4443  sucprc  4444  fvun1  5624  fmptpr  5751  fvunsng  5753  fvsnun1  5756  fvsnun2  5757  fsnunfv  5760  fsnunres  5761  rdg0  6442  omv2  6520  unsnfidcex  6978  unfidisj  6980  undifdc  6982  ssfirab  6992  dju0en  7276  djuassen  7279  fzsuc2  10148  fseq1p1m1  10163  hashunlem  10878  ennnfonelem1  12567  setsresg  12659  setsslid  12672  lgsquadlem2  15235  fmelpw1o  15368
  Copyright terms: Public domain W3C validator