ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  un0 Unicode version

Theorem un0 3468
Description: The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
un0  |-  ( A  u.  (/) )  =  A

Proof of Theorem un0
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 noel 3438 . . . 4  |-  -.  x  e.  (/)
21biorfi 747 . . 3  |-  ( x  e.  A  <->  ( x  e.  A  \/  x  e.  (/) ) )
32bicomi 132 . 2  |-  ( ( x  e.  A  \/  x  e.  (/) )  <->  x  e.  A )
43uneqri 3289 1  |-  ( A  u.  (/) )  =  A
Colors of variables: wff set class
Syntax hints:    \/ wo 709    = wceq 1363    e. wcel 2158    u. cun 3139   (/)c0 3434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-dif 3143  df-un 3145  df-nul 3435
This theorem is referenced by:  un00  3481  disjssun  3498  difun2  3514  difdifdirss  3519  disjpr2  3668  prprc1  3712  diftpsn3  3745  iununir  3982  exmid1stab  4220  suc0  4423  sucprc  4424  fvun1  5595  fmptpr  5721  fvunsng  5723  fvsnun1  5726  fvsnun2  5727  fsnunfv  5730  fsnunres  5731  rdg0  6402  omv2  6480  unsnfidcex  6933  unfidisj  6935  undifdc  6937  ssfirab  6947  dju0en  7227  djuassen  7230  fzsuc2  10093  fseq1p1m1  10108  hashunlem  10798  ennnfonelem1  12422  setsresg  12514  setsslid  12527  fmelpw1o  14854
  Copyright terms: Public domain W3C validator