| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfwlporlemd | Unicode version | ||
| Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
| Ref | Expression |
|---|---|
| nninfwlporlem.x |
|
| nninfwlporlem.y |
|
| nninfwlporlem.d |
|
| Ref | Expression |
|---|---|
| nninfwlporlemd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 6578 |
. . . . . . . . 9
| |
| 2 | 1 | neii 2402 |
. . . . . . . 8
|
| 3 | 2 | intnan 934 |
. . . . . . 7
|
| 4 | 3 | biorfi 751 |
. . . . . 6
|
| 5 | eqid 2229 |
. . . . . . . 8
| |
| 6 | 5 | biantru 302 |
. . . . . . 7
|
| 7 | 6 | orbi1i 768 |
. . . . . 6
|
| 8 | 4, 7 | bitri 184 |
. . . . 5
|
| 9 | eqcom 2231 |
. . . . . 6
| |
| 10 | nninfwlporlem.d |
. . . . . . . . . 10
| |
| 11 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 12 | fveq2 5627 |
. . . . . . . . . . . . 13
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . . . . . . . . . 12
|
| 14 | 13 | ifbid 3624 |
. . . . . . . . . . 11
|
| 15 | 14 | cbvmptv 4180 |
. . . . . . . . . 10
|
| 16 | 10, 15 | eqtri 2250 |
. . . . . . . . 9
|
| 17 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 18 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 20 | 19 | ifbid 3624 |
. . . . . . . . 9
|
| 21 | simpr 110 |
. . . . . . . . 9
| |
| 22 | 1lt2o 6588 |
. . . . . . . . . . 11
| |
| 23 | 22 | a1i 9 |
. . . . . . . . . 10
|
| 24 | 0lt2o 6587 |
. . . . . . . . . . 11
| |
| 25 | 24 | a1i 9 |
. . . . . . . . . 10
|
| 26 | 2ssom 6670 |
. . . . . . . . . . . 12
| |
| 27 | nninfwlporlem.x |
. . . . . . . . . . . . 13
| |
| 28 | 27 | ffvelcdmda 5770 |
. . . . . . . . . . . 12
|
| 29 | 26, 28 | sselid 3222 |
. . . . . . . . . . 11
|
| 30 | nninfwlporlem.y |
. . . . . . . . . . . . 13
| |
| 31 | 30 | ffvelcdmda 5770 |
. . . . . . . . . . . 12
|
| 32 | 26, 31 | sselid 3222 |
. . . . . . . . . . 11
|
| 33 | nndceq 6645 |
. . . . . . . . . . 11
| |
| 34 | 29, 32, 33 | syl2anc 411 |
. . . . . . . . . 10
|
| 35 | 23, 25, 34 | ifcldcd 3640 |
. . . . . . . . 9
|
| 36 | 16, 20, 21, 35 | fvmptd3 5728 |
. . . . . . . 8
|
| 37 | 36 | eqeq2d 2241 |
. . . . . . 7
|
| 38 | eqifdc 3639 |
. . . . . . . 8
| |
| 39 | 34, 38 | syl 14 |
. . . . . . 7
|
| 40 | 37, 39 | bitrd 188 |
. . . . . 6
|
| 41 | 9, 40 | bitr3id 194 |
. . . . 5
|
| 42 | 8, 41 | bitr4id 199 |
. . . 4
|
| 43 | 42 | ralbidva 2526 |
. . 3
|
| 44 | fveqeq2 5636 |
. . . 4
| |
| 45 | 44 | cbvralv 2765 |
. . 3
|
| 46 | 43, 45 | bitrdi 196 |
. 2
|
| 47 | 27 | ffnd 5474 |
. . 3
|
| 48 | 30 | ffnd 5474 |
. . 3
|
| 49 | eqfnfv 5732 |
. . 3
| |
| 50 | 47, 48, 49 | syl2anc 411 |
. 2
|
| 51 | 35 | ralrimiva 2603 |
. . . 4
|
| 52 | 10 | fnmpt 5450 |
. . . 4
|
| 53 | 51, 52 | syl 14 |
. . 3
|
| 54 | eqidd 2230 |
. . 3
| |
| 55 | 1onn 6666 |
. . . 4
| |
| 56 | 55 | a1i 9 |
. . 3
|
| 57 | 55 | a1i 9 |
. . 3
|
| 58 | 53, 54, 56, 57 | fnmptfvd 5739 |
. 2
|
| 59 | 46, 50, 58 | 3bitr4d 220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-1o 6562 df-2o 6563 |
| This theorem is referenced by: nninfwlporlem 7340 |
| Copyright terms: Public domain | W3C validator |