ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd Unicode version

Theorem nninfwlporlemd 7233
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x  |-  ( ph  ->  X : om --> 2o )
nninfwlporlem.y  |-  ( ph  ->  Y : om --> 2o )
nninfwlporlem.d  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
Assertion
Ref Expression
nninfwlporlemd  |-  ( ph  ->  ( X  =  Y  <-> 
D  =  ( i  e.  om  |->  1o ) ) )
Distinct variable groups:    D, i    i, X    i, Y    ph, i

Proof of Theorem nninfwlporlemd
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1n0 6487 . . . . . . . . 9  |-  1o  =/=  (/)
21neii 2366 . . . . . . . 8  |-  -.  1o  =  (/)
32intnan 930 . . . . . . 7  |-  -.  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) )
43biorfi 747 . . . . . 6  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( ( X `  i )  =  ( Y `  i )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) )
5 eqid 2193 . . . . . . . 8  |-  1o  =  1o
65biantru 302 . . . . . . 7  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o ) )
76orbi1i 764 . . . . . 6  |-  ( ( ( X `  i
)  =  ( Y `
 i )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) )
84, 7bitri 184 . . . . 5  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) )
9 eqcom 2195 . . . . . 6  |-  ( 1o  =  ( D `  i )  <->  ( D `  i )  =  1o )
10 nninfwlporlem.d . . . . . . . . . 10  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
11 fveq2 5555 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  ( X `  i )  =  ( X `  j ) )
12 fveq2 5555 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  ( Y `  i )  =  ( Y `  j ) )
1311, 12eqeq12d 2208 . . . . . . . . . . . 12  |-  ( i  =  j  ->  (
( X `  i
)  =  ( Y `
 i )  <->  ( X `  j )  =  ( Y `  j ) ) )
1413ifbid 3579 . . . . . . . . . . 11  |-  ( i  =  j  ->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) )  =  if (
( X `  j
)  =  ( Y `
 j ) ,  1o ,  (/) ) )
1514cbvmptv 4126 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( ( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) ) )  =  ( j  e. 
om  |->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) ) )
1610, 15eqtri 2214 . . . . . . . . 9  |-  D  =  ( j  e.  om  |->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) ) )
17 fveq2 5555 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( X `  j )  =  ( X `  i ) )
18 fveq2 5555 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( Y `  j )  =  ( Y `  i ) )
1917, 18eqeq12d 2208 . . . . . . . . . 10  |-  ( j  =  i  ->  (
( X `  j
)  =  ( Y `
 j )  <->  ( X `  i )  =  ( Y `  i ) ) )
2019ifbid 3579 . . . . . . . . 9  |-  ( j  =  i  ->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) )  =  if (
( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) ) )
21 simpr 110 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  i  e.  om )
22 1lt2o 6497 . . . . . . . . . . 11  |-  1o  e.  2o
2322a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  2o )
24 0lt2o 6496 . . . . . . . . . . 11  |-  (/)  e.  2o
2524a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  ->  (/)  e.  2o )
26 2ssom 6579 . . . . . . . . . . . 12  |-  2o  C_  om
27 nninfwlporlem.x . . . . . . . . . . . . 13  |-  ( ph  ->  X : om --> 2o )
2827ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  2o )
2926, 28sselid 3178 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  om )
30 nninfwlporlem.y . . . . . . . . . . . . 13  |-  ( ph  ->  Y : om --> 2o )
3130ffvelcdmda 5694 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  2o )
3226, 31sselid 3178 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  om )
33 nndceq 6554 . . . . . . . . . . 11  |-  ( ( ( X `  i
)  e.  om  /\  ( Y `  i )  e.  om )  -> DECID  ( X `  i )  =  ( Y `  i ) )
3429, 32, 33syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  -> DECID  ( X `  i
)  =  ( Y `
 i ) )
3523, 25, 34ifcldcd 3594 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  if (
( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) )  e.  2o )
3616, 20, 21, 35fvmptd3 5652 . . . . . . . 8  |-  ( (
ph  /\  i  e.  om )  ->  ( D `  i )  =  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
3736eqeq2d 2205 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  ( D `  i )  <->  1o  =  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) ) )
38 eqifdc 3593 . . . . . . . 8  |-  (DECID  ( X `
 i )  =  ( Y `  i
)  ->  ( 1o  =  if ( ( X `
 i )  =  ( Y `  i
) ,  1o ,  (/) )  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
3934, 38syl 14 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  if ( ( X `
 i )  =  ( Y `  i
) ,  1o ,  (/) )  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
4037, 39bitrd 188 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  ( D `  i )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) ) )
419, 40bitr3id 194 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  ( ( D `  i )  =  1o  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
428, 41bitr4id 199 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  ( ( X `  i )  =  ( Y `  i )  <->  ( D `  i )  =  1o ) )
4342ralbidva 2490 . . 3  |-  ( ph  ->  ( A. i  e. 
om  ( X `  i )  =  ( Y `  i )  <->  A. i  e.  om  ( D `  i )  =  1o ) )
44 fveqeq2 5564 . . . 4  |-  ( i  =  j  ->  (
( D `  i
)  =  1o  <->  ( D `  j )  =  1o ) )
4544cbvralv 2726 . . 3  |-  ( A. i  e.  om  ( D `  i )  =  1o  <->  A. j  e.  om  ( D `  j )  =  1o )
4643, 45bitrdi 196 . 2  |-  ( ph  ->  ( A. i  e. 
om  ( X `  i )  =  ( Y `  i )  <->  A. j  e.  om  ( D `  j )  =  1o ) )
4727ffnd 5405 . . 3  |-  ( ph  ->  X  Fn  om )
4830ffnd 5405 . . 3  |-  ( ph  ->  Y  Fn  om )
49 eqfnfv 5656 . . 3  |-  ( ( X  Fn  om  /\  Y  Fn  om )  ->  ( X  =  Y  <->  A. i  e.  om  ( X `  i )  =  ( Y `  i ) ) )
5047, 48, 49syl2anc 411 . 2  |-  ( ph  ->  ( X  =  Y  <->  A. i  e.  om  ( X `  i )  =  ( Y `  i ) ) )
5135ralrimiva 2567 . . . 4  |-  ( ph  ->  A. i  e.  om  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) )  e.  2o )
5210fnmpt 5381 . . . 4  |-  ( A. i  e.  om  if ( ( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) )  e.  2o  ->  D  Fn  om )
5351, 52syl 14 . . 3  |-  ( ph  ->  D  Fn  om )
54 eqidd 2194 . . 3  |-  ( j  =  i  ->  1o  =  1o )
55 1onn 6575 . . . 4  |-  1o  e.  om
5655a1i 9 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  1o  e.  om )
5755a1i 9 . . 3  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
5853, 54, 56, 57fnmptfvd 5663 . 2  |-  ( ph  ->  ( D  =  ( i  e.  om  |->  1o )  <->  A. j  e.  om  ( D `  j )  =  1o ) )
5946, 50, 583bitr4d 220 1  |-  ( ph  ->  ( X  =  Y  <-> 
D  =  ( i  e.  om  |->  1o ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   A.wral 2472   (/)c0 3447   ifcif 3558    |-> cmpt 4091   omcom 4623    Fn wfn 5250   -->wf 5251   ` cfv 5255   1oc1o 6464   2oc2o 6465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-1o 6471  df-2o 6472
This theorem is referenced by:  nninfwlporlem  7234
  Copyright terms: Public domain W3C validator