Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfwlporlemd | Unicode version |
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.) |
Ref | Expression |
---|---|
nninfwlporlem.x | |
nninfwlporlem.y | |
nninfwlporlem.d |
Ref | Expression |
---|---|
nninfwlporlemd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 6411 | . . . . . . . . 9 | |
2 | 1 | neii 2342 | . . . . . . . 8 |
3 | 2 | intnan 924 | . . . . . . 7 |
4 | 3 | biorfi 741 | . . . . . 6 |
5 | eqid 2170 | . . . . . . . 8 | |
6 | 5 | biantru 300 | . . . . . . 7 |
7 | 6 | orbi1i 758 | . . . . . 6 |
8 | 4, 7 | bitri 183 | . . . . 5 |
9 | eqcom 2172 | . . . . . 6 | |
10 | nninfwlporlem.d | . . . . . . . . . 10 | |
11 | fveq2 5496 | . . . . . . . . . . . . 13 | |
12 | fveq2 5496 | . . . . . . . . . . . . 13 | |
13 | 11, 12 | eqeq12d 2185 | . . . . . . . . . . . 12 |
14 | 13 | ifbid 3547 | . . . . . . . . . . 11 |
15 | 14 | cbvmptv 4085 | . . . . . . . . . 10 |
16 | 10, 15 | eqtri 2191 | . . . . . . . . 9 |
17 | fveq2 5496 | . . . . . . . . . . 11 | |
18 | fveq2 5496 | . . . . . . . . . . 11 | |
19 | 17, 18 | eqeq12d 2185 | . . . . . . . . . 10 |
20 | 19 | ifbid 3547 | . . . . . . . . 9 |
21 | simpr 109 | . . . . . . . . 9 | |
22 | 1lt2o 6421 | . . . . . . . . . . 11 | |
23 | 22 | a1i 9 | . . . . . . . . . 10 |
24 | 0lt2o 6420 | . . . . . . . . . . 11 | |
25 | 24 | a1i 9 | . . . . . . . . . 10 |
26 | 2ssom 6503 | . . . . . . . . . . . 12 | |
27 | nninfwlporlem.x | . . . . . . . . . . . . 13 | |
28 | 27 | ffvelrnda 5631 | . . . . . . . . . . . 12 |
29 | 26, 28 | sselid 3145 | . . . . . . . . . . 11 |
30 | nninfwlporlem.y | . . . . . . . . . . . . 13 | |
31 | 30 | ffvelrnda 5631 | . . . . . . . . . . . 12 |
32 | 26, 31 | sselid 3145 | . . . . . . . . . . 11 |
33 | nndceq 6478 | . . . . . . . . . . 11 DECID | |
34 | 29, 32, 33 | syl2anc 409 | . . . . . . . . . 10 DECID |
35 | 23, 25, 34 | ifcldcd 3561 | . . . . . . . . 9 |
36 | 16, 20, 21, 35 | fvmptd3 5589 | . . . . . . . 8 |
37 | 36 | eqeq2d 2182 | . . . . . . 7 |
38 | eqifdc 3560 | . . . . . . . 8 DECID | |
39 | 34, 38 | syl 14 | . . . . . . 7 |
40 | 37, 39 | bitrd 187 | . . . . . 6 |
41 | 9, 40 | bitr3id 193 | . . . . 5 |
42 | 8, 41 | bitr4id 198 | . . . 4 |
43 | 42 | ralbidva 2466 | . . 3 |
44 | fveqeq2 5505 | . . . 4 | |
45 | 44 | cbvralv 2696 | . . 3 |
46 | 43, 45 | bitrdi 195 | . 2 |
47 | 27 | ffnd 5348 | . . 3 |
48 | 30 | ffnd 5348 | . . 3 |
49 | eqfnfv 5593 | . . 3 | |
50 | 47, 48, 49 | syl2anc 409 | . 2 |
51 | 35 | ralrimiva 2543 | . . . 4 |
52 | 10 | fnmpt 5324 | . . . 4 |
53 | 51, 52 | syl 14 | . . 3 |
54 | eqidd 2171 | . . 3 | |
55 | 1onn 6499 | . . . 4 | |
56 | 55 | a1i 9 | . . 3 |
57 | 55 | a1i 9 | . . 3 |
58 | 53, 54, 56, 57 | fnmptfvd 5600 | . 2 |
59 | 46, 50, 58 | 3bitr4d 219 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 c0 3414 cif 3526 cmpt 4050 com 4574 wfn 5193 wf 5194 cfv 5198 c1o 6388 c2o 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-1o 6395 df-2o 6396 |
This theorem is referenced by: nninfwlporlem 7149 |
Copyright terms: Public domain | W3C validator |