ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfwlporlemd Unicode version

Theorem nninfwlporlemd 7148
Description: Given two countably infinite sequences of zeroes and ones, they are equal if and only if a sequence formed by pointwise comparing them is all ones. (Contributed by Jim Kingdon, 6-Dec-2024.)
Hypotheses
Ref Expression
nninfwlporlem.x  |-  ( ph  ->  X : om --> 2o )
nninfwlporlem.y  |-  ( ph  ->  Y : om --> 2o )
nninfwlporlem.d  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
Assertion
Ref Expression
nninfwlporlemd  |-  ( ph  ->  ( X  =  Y  <-> 
D  =  ( i  e.  om  |->  1o ) ) )
Distinct variable groups:    D, i    i, X    i, Y    ph, i

Proof of Theorem nninfwlporlemd
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 1n0 6411 . . . . . . . . 9  |-  1o  =/=  (/)
21neii 2342 . . . . . . . 8  |-  -.  1o  =  (/)
32intnan 924 . . . . . . 7  |-  -.  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) )
43biorfi 741 . . . . . 6  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( ( X `  i )  =  ( Y `  i )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) )
5 eqid 2170 . . . . . . . 8  |-  1o  =  1o
65biantru 300 . . . . . . 7  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o ) )
76orbi1i 758 . . . . . 6  |-  ( ( ( X `  i
)  =  ( Y `
 i )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) )
84, 7bitri 183 . . . . 5  |-  ( ( X `  i )  =  ( Y `  i )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) )
9 eqcom 2172 . . . . . 6  |-  ( 1o  =  ( D `  i )  <->  ( D `  i )  =  1o )
10 nninfwlporlem.d . . . . . . . . . 10  |-  D  =  ( i  e.  om  |->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
11 fveq2 5496 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  ( X `  i )  =  ( X `  j ) )
12 fveq2 5496 . . . . . . . . . . . . 13  |-  ( i  =  j  ->  ( Y `  i )  =  ( Y `  j ) )
1311, 12eqeq12d 2185 . . . . . . . . . . . 12  |-  ( i  =  j  ->  (
( X `  i
)  =  ( Y `
 i )  <->  ( X `  j )  =  ( Y `  j ) ) )
1413ifbid 3547 . . . . . . . . . . 11  |-  ( i  =  j  ->  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) )  =  if (
( X `  j
)  =  ( Y `
 j ) ,  1o ,  (/) ) )
1514cbvmptv 4085 . . . . . . . . . 10  |-  ( i  e.  om  |->  if ( ( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) ) )  =  ( j  e. 
om  |->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) ) )
1610, 15eqtri 2191 . . . . . . . . 9  |-  D  =  ( j  e.  om  |->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) ) )
17 fveq2 5496 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( X `  j )  =  ( X `  i ) )
18 fveq2 5496 . . . . . . . . . . 11  |-  ( j  =  i  ->  ( Y `  j )  =  ( Y `  i ) )
1917, 18eqeq12d 2185 . . . . . . . . . 10  |-  ( j  =  i  ->  (
( X `  j
)  =  ( Y `
 j )  <->  ( X `  i )  =  ( Y `  i ) ) )
2019ifbid 3547 . . . . . . . . 9  |-  ( j  =  i  ->  if ( ( X `  j )  =  ( Y `  j ) ,  1o ,  (/) )  =  if (
( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) ) )
21 simpr 109 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  i  e.  om )
22 1lt2o 6421 . . . . . . . . . . 11  |-  1o  e.  2o
2322a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  2o )
24 0lt2o 6420 . . . . . . . . . . 11  |-  (/)  e.  2o
2524a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  ->  (/)  e.  2o )
26 2ssom 6503 . . . . . . . . . . . 12  |-  2o  C_  om
27 nninfwlporlem.x . . . . . . . . . . . . 13  |-  ( ph  ->  X : om --> 2o )
2827ffvelrnda 5631 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  2o )
2926, 28sselid 3145 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  om )  ->  ( X `  i )  e.  om )
30 nninfwlporlem.y . . . . . . . . . . . . 13  |-  ( ph  ->  Y : om --> 2o )
3130ffvelrnda 5631 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  2o )
3226, 31sselid 3145 . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  om )  ->  ( Y `  i )  e.  om )
33 nndceq 6478 . . . . . . . . . . 11  |-  ( ( ( X `  i
)  e.  om  /\  ( Y `  i )  e.  om )  -> DECID  ( X `  i )  =  ( Y `  i ) )
3429, 32, 33syl2anc 409 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  om )  -> DECID  ( X `  i
)  =  ( Y `
 i ) )
3523, 25, 34ifcldcd 3561 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  om )  ->  if (
( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) )  e.  2o )
3616, 20, 21, 35fvmptd3 5589 . . . . . . . 8  |-  ( (
ph  /\  i  e.  om )  ->  ( D `  i )  =  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) )
3736eqeq2d 2182 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  ( D `  i )  <->  1o  =  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) ) ) )
38 eqifdc 3560 . . . . . . . 8  |-  (DECID  ( X `
 i )  =  ( Y `  i
)  ->  ( 1o  =  if ( ( X `
 i )  =  ( Y `  i
) ,  1o ,  (/) )  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
3934, 38syl 14 . . . . . . 7  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  if ( ( X `
 i )  =  ( Y `  i
) ,  1o ,  (/) )  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
4037, 39bitrd 187 . . . . . 6  |-  ( (
ph  /\  i  e.  om )  ->  ( 1o  =  ( D `  i )  <->  ( (
( X `  i
)  =  ( Y `
 i )  /\  1o  =  1o )  \/  ( -.  ( X `
 i )  =  ( Y `  i
)  /\  1o  =  (/) ) ) ) )
419, 40bitr3id 193 . . . . 5  |-  ( (
ph  /\  i  e.  om )  ->  ( ( D `  i )  =  1o  <->  ( ( ( X `  i )  =  ( Y `  i )  /\  1o  =  1o )  \/  ( -.  ( X `  i
)  =  ( Y `
 i )  /\  1o  =  (/) ) ) ) )
428, 41bitr4id 198 . . . 4  |-  ( (
ph  /\  i  e.  om )  ->  ( ( X `  i )  =  ( Y `  i )  <->  ( D `  i )  =  1o ) )
4342ralbidva 2466 . . 3  |-  ( ph  ->  ( A. i  e. 
om  ( X `  i )  =  ( Y `  i )  <->  A. i  e.  om  ( D `  i )  =  1o ) )
44 fveqeq2 5505 . . . 4  |-  ( i  =  j  ->  (
( D `  i
)  =  1o  <->  ( D `  j )  =  1o ) )
4544cbvralv 2696 . . 3  |-  ( A. i  e.  om  ( D `  i )  =  1o  <->  A. j  e.  om  ( D `  j )  =  1o )
4643, 45bitrdi 195 . 2  |-  ( ph  ->  ( A. i  e. 
om  ( X `  i )  =  ( Y `  i )  <->  A. j  e.  om  ( D `  j )  =  1o ) )
4727ffnd 5348 . . 3  |-  ( ph  ->  X  Fn  om )
4830ffnd 5348 . . 3  |-  ( ph  ->  Y  Fn  om )
49 eqfnfv 5593 . . 3  |-  ( ( X  Fn  om  /\  Y  Fn  om )  ->  ( X  =  Y  <->  A. i  e.  om  ( X `  i )  =  ( Y `  i ) ) )
5047, 48, 49syl2anc 409 . 2  |-  ( ph  ->  ( X  =  Y  <->  A. i  e.  om  ( X `  i )  =  ( Y `  i ) ) )
5135ralrimiva 2543 . . . 4  |-  ( ph  ->  A. i  e.  om  if ( ( X `  i )  =  ( Y `  i ) ,  1o ,  (/) )  e.  2o )
5210fnmpt 5324 . . . 4  |-  ( A. i  e.  om  if ( ( X `  i
)  =  ( Y `
 i ) ,  1o ,  (/) )  e.  2o  ->  D  Fn  om )
5351, 52syl 14 . . 3  |-  ( ph  ->  D  Fn  om )
54 eqidd 2171 . . 3  |-  ( j  =  i  ->  1o  =  1o )
55 1onn 6499 . . . 4  |-  1o  e.  om
5655a1i 9 . . 3  |-  ( (
ph  /\  j  e.  om )  ->  1o  e.  om )
5755a1i 9 . . 3  |-  ( (
ph  /\  i  e.  om )  ->  1o  e.  om )
5853, 54, 56, 57fnmptfvd 5600 . 2  |-  ( ph  ->  ( D  =  ( i  e.  om  |->  1o )  <->  A. j  e.  om  ( D `  j )  =  1o ) )
5946, 50, 583bitr4d 219 1  |-  ( ph  ->  ( X  =  Y  <-> 
D  =  ( i  e.  om  |->  1o ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   (/)c0 3414   ifcif 3526    |-> cmpt 4050   omcom 4574    Fn wfn 5193   -->wf 5194   ` cfv 5198   1oc1o 6388   2oc2o 6389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-1o 6395  df-2o 6396
This theorem is referenced by:  nninfwlporlem  7149
  Copyright terms: Public domain W3C validator