ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g Unicode version

Theorem frec0g 6392
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )

Proof of Theorem frec0g
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4837 . . . . . . . . . 10  |-  dom  (/)  =  (/)
21biantrur 303 . . . . . . . . 9  |-  ( x  e.  A  <->  ( dom  (/)  =  (/)  /\  x  e.  A ) )
3 vex 2740 . . . . . . . . . . . . . . . 16  |-  m  e. 
_V
4 nsuceq0g 4415 . . . . . . . . . . . . . . . 16  |-  ( m  e.  _V  ->  suc  m  =/=  (/) )
53, 4ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  m  =/=  (/)
65nesymi 2393 . . . . . . . . . . . . . 14  |-  -.  (/)  =  suc  m
71eqeq1i 2185 . . . . . . . . . . . . . 14  |-  ( dom  (/)  =  suc  m  <->  (/)  =  suc  m )
86, 7mtbir 671 . . . . . . . . . . . . 13  |-  -.  dom  (/)  =  suc  m
98intnanr 930 . . . . . . . . . . . 12  |-  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
109a1i 9 . . . . . . . . . . 11  |-  ( m  e.  om  ->  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) )
1110nrex 2569 . . . . . . . . . 10  |-  -.  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
1211biorfi 746 . . . . . . . . 9  |-  ( ( dom  (/)  =  (/)  /\  x  e.  A )  <->  ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
13 orcom 728 . . . . . . . . 9  |-  ( ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
142, 12, 133bitri 206 . . . . . . . 8  |-  ( x  e.  A  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
1514abbii 2293 . . . . . . 7  |-  { x  |  x  e.  A }  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }
16 abid2 2298 . . . . . . 7  |-  { x  |  x  e.  A }  =  A
1715, 16eqtr3i 2200 . . . . . 6  |-  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  =  A
18 elex 2748 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
1917, 18eqeltrid 2264 . . . . 5  |-  ( A  e.  V  ->  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )
20 0ex 4127 . . . . . . 7  |-  (/)  e.  _V
21 dmeq 4823 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
2221eqeq1d 2186 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( dom  g  =  suc  m  <->  dom  (/)  =  suc  m ) )
23 fveq1 5510 . . . . . . . . . . . . . 14  |-  ( g  =  (/)  ->  ( g `
 m )  =  ( (/) `  m ) )
2423fveq2d 5515 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  ( F `
 ( g `  m ) )  =  ( F `  ( (/) `  m ) ) )
2524eleq2d 2247 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( x  e.  ( F `  ( g `  m
) )  <->  x  e.  ( F `  ( (/) `  m ) ) ) )
2622, 25anbi12d 473 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) ) )
2726rexbidv 2478 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
2821eqeq1d 2186 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( dom  g  =  (/)  <->  dom  (/)  =  (/) ) )
2928anbi1d 465 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <-> 
( dom  (/)  =  (/)  /\  x  e.  A ) ) )
3027, 29orbi12d 793 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) ) )
3130abbidv 2295 . . . . . . . 8  |-  ( g  =  (/)  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
32 eqid 2177 . . . . . . . 8  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3331, 32fvmptg 5588 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  {
x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )  ->  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3420, 33mpan 424 . . . . . 6  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3534, 17eqtrdi 2226 . . . . 5  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3619, 35syl 14 . . . 4  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3736, 18eqeltrd 2254 . . 3  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V )
38 df-frec 6386 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
3938fveq1i 5512 . . . . 5  |-  (frec ( F ,  A ) `
 (/) )  =  ( (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )
40 peano1 4590 . . . . . 6  |-  (/)  e.  om
41 fvres 5535 . . . . . 6  |-  ( (/)  e.  om  ->  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) ) )
4240, 41ax-mp 5 . . . . 5  |-  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
4339, 42eqtri 2198 . . . 4  |-  (frec ( F ,  A ) `
 (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
44 eqid 2177 . . . . 5  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4544tfr0 6318 . . . 4  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )  =  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4643, 45eqtrid 2222 . . 3  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (frec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4737, 46syl 14 . 2  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4847, 36eqtrd 2210 1  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   {cab 2163    =/= wne 2347   E.wrex 2456   _Vcvv 2737   (/)c0 3422    |-> cmpt 4061   suc csuc 4362   omcom 4586   dom cdm 4623    |` cres 4625   ` cfv 5212  recscrecs 6299  freccfrec 6385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-res 4635  df-iota 5174  df-fun 5214  df-fn 5215  df-fv 5220  df-recs 6300  df-frec 6386
This theorem is referenced by:  frecrdg  6403  frec2uz0d  10385  frec2uzrdg  10395  frecuzrdg0  10399  frecuzrdgg  10402  frecuzrdg0t  10408  seq3val  10444  seqvalcd  10445
  Copyright terms: Public domain W3C validator