| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec0g | Unicode version | ||
| Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) |
| Ref | Expression |
|---|---|
| frec0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 4892 |
. . . . . . . . . 10
| |
| 2 | 1 | biantrur 303 |
. . . . . . . . 9
|
| 3 | vex 2775 |
. . . . . . . . . . . . . . . 16
| |
| 4 | nsuceq0g 4465 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | nesymi 2422 |
. . . . . . . . . . . . . 14
|
| 7 | 1 | eqeq1i 2213 |
. . . . . . . . . . . . . 14
|
| 8 | 6, 7 | mtbir 673 |
. . . . . . . . . . . . 13
|
| 9 | 8 | intnanr 932 |
. . . . . . . . . . . 12
|
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
|
| 11 | 10 | nrex 2598 |
. . . . . . . . . 10
|
| 12 | 11 | biorfi 748 |
. . . . . . . . 9
|
| 13 | orcom 730 |
. . . . . . . . 9
| |
| 14 | 2, 12, 13 | 3bitri 206 |
. . . . . . . 8
|
| 15 | 14 | abbii 2321 |
. . . . . . 7
|
| 16 | abid2 2326 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtr3i 2228 |
. . . . . 6
|
| 18 | elex 2783 |
. . . . . 6
| |
| 19 | 17, 18 | eqeltrid 2292 |
. . . . 5
|
| 20 | 0ex 4171 |
. . . . . . 7
| |
| 21 | dmeq 4878 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2214 |
. . . . . . . . . . . 12
|
| 23 | fveq1 5575 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | fveq2d 5580 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eleq2d 2275 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . . 11
|
| 27 | 26 | rexbidv 2507 |
. . . . . . . . . 10
|
| 28 | 21 | eqeq1d 2214 |
. . . . . . . . . . 11
|
| 29 | 28 | anbi1d 465 |
. . . . . . . . . 10
|
| 30 | 27, 29 | orbi12d 795 |
. . . . . . . . 9
|
| 31 | 30 | abbidv 2323 |
. . . . . . . 8
|
| 32 | eqid 2205 |
. . . . . . . 8
| |
| 33 | 31, 32 | fvmptg 5655 |
. . . . . . 7
|
| 34 | 20, 33 | mpan 424 |
. . . . . 6
|
| 35 | 34, 17 | eqtrdi 2254 |
. . . . 5
|
| 36 | 19, 35 | syl 14 |
. . . 4
|
| 37 | 36, 18 | eqeltrd 2282 |
. . 3
|
| 38 | df-frec 6477 |
. . . . . 6
| |
| 39 | 38 | fveq1i 5577 |
. . . . 5
|
| 40 | peano1 4642 |
. . . . . 6
| |
| 41 | fvres 5600 |
. . . . . 6
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . 5
|
| 43 | 39, 42 | eqtri 2226 |
. . . 4
|
| 44 | eqid 2205 |
. . . . 5
| |
| 45 | 44 | tfr0 6409 |
. . . 4
|
| 46 | 43, 45 | eqtrid 2250 |
. . 3
|
| 47 | 37, 46 | syl 14 |
. 2
|
| 48 | 47, 36 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-recs 6391 df-frec 6477 |
| This theorem is referenced by: frecrdg 6494 frec2uz0d 10544 frec2uzrdg 10554 frecuzrdg0 10558 frecuzrdgg 10561 frecuzrdg0t 10567 seq3val 10605 seqvalcd 10606 |
| Copyright terms: Public domain | W3C validator |