| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec0g | Unicode version | ||
| Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) |
| Ref | Expression |
|---|---|
| frec0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 4911 |
. . . . . . . . . 10
| |
| 2 | 1 | biantrur 303 |
. . . . . . . . 9
|
| 3 | vex 2779 |
. . . . . . . . . . . . . . . 16
| |
| 4 | nsuceq0g 4483 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | nesymi 2424 |
. . . . . . . . . . . . . 14
|
| 7 | 1 | eqeq1i 2215 |
. . . . . . . . . . . . . 14
|
| 8 | 6, 7 | mtbir 673 |
. . . . . . . . . . . . 13
|
| 9 | 8 | intnanr 932 |
. . . . . . . . . . . 12
|
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
|
| 11 | 10 | nrex 2600 |
. . . . . . . . . 10
|
| 12 | 11 | biorfi 748 |
. . . . . . . . 9
|
| 13 | orcom 730 |
. . . . . . . . 9
| |
| 14 | 2, 12, 13 | 3bitri 206 |
. . . . . . . 8
|
| 15 | 14 | abbii 2323 |
. . . . . . 7
|
| 16 | abid2 2328 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtr3i 2230 |
. . . . . 6
|
| 18 | elex 2788 |
. . . . . 6
| |
| 19 | 17, 18 | eqeltrid 2294 |
. . . . 5
|
| 20 | 0ex 4187 |
. . . . . . 7
| |
| 21 | dmeq 4897 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2216 |
. . . . . . . . . . . 12
|
| 23 | fveq1 5598 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | fveq2d 5603 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eleq2d 2277 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . . 11
|
| 27 | 26 | rexbidv 2509 |
. . . . . . . . . 10
|
| 28 | 21 | eqeq1d 2216 |
. . . . . . . . . . 11
|
| 29 | 28 | anbi1d 465 |
. . . . . . . . . 10
|
| 30 | 27, 29 | orbi12d 795 |
. . . . . . . . 9
|
| 31 | 30 | abbidv 2325 |
. . . . . . . 8
|
| 32 | eqid 2207 |
. . . . . . . 8
| |
| 33 | 31, 32 | fvmptg 5678 |
. . . . . . 7
|
| 34 | 20, 33 | mpan 424 |
. . . . . 6
|
| 35 | 34, 17 | eqtrdi 2256 |
. . . . 5
|
| 36 | 19, 35 | syl 14 |
. . . 4
|
| 37 | 36, 18 | eqeltrd 2284 |
. . 3
|
| 38 | df-frec 6500 |
. . . . . 6
| |
| 39 | 38 | fveq1i 5600 |
. . . . 5
|
| 40 | peano1 4660 |
. . . . . 6
| |
| 41 | fvres 5623 |
. . . . . 6
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . 5
|
| 43 | 39, 42 | eqtri 2228 |
. . . 4
|
| 44 | eqid 2207 |
. . . . 5
| |
| 45 | 44 | tfr0 6432 |
. . . 4
|
| 46 | 43, 45 | eqtrid 2252 |
. . 3
|
| 47 | 37, 46 | syl 14 |
. 2
|
| 48 | 47, 36 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-recs 6414 df-frec 6500 |
| This theorem is referenced by: frecrdg 6517 frec2uz0d 10581 frec2uzrdg 10591 frecuzrdg0 10595 frecuzrdgg 10598 frecuzrdg0t 10604 seq3val 10642 seqvalcd 10643 |
| Copyright terms: Public domain | W3C validator |