ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g Unicode version

Theorem frec0g 6506
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )

Proof of Theorem frec0g
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4911 . . . . . . . . . 10  |-  dom  (/)  =  (/)
21biantrur 303 . . . . . . . . 9  |-  ( x  e.  A  <->  ( dom  (/)  =  (/)  /\  x  e.  A ) )
3 vex 2779 . . . . . . . . . . . . . . . 16  |-  m  e. 
_V
4 nsuceq0g 4483 . . . . . . . . . . . . . . . 16  |-  ( m  e.  _V  ->  suc  m  =/=  (/) )
53, 4ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  m  =/=  (/)
65nesymi 2424 . . . . . . . . . . . . . 14  |-  -.  (/)  =  suc  m
71eqeq1i 2215 . . . . . . . . . . . . . 14  |-  ( dom  (/)  =  suc  m  <->  (/)  =  suc  m )
86, 7mtbir 673 . . . . . . . . . . . . 13  |-  -.  dom  (/)  =  suc  m
98intnanr 932 . . . . . . . . . . . 12  |-  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
109a1i 9 . . . . . . . . . . 11  |-  ( m  e.  om  ->  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) )
1110nrex 2600 . . . . . . . . . 10  |-  -.  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
1211biorfi 748 . . . . . . . . 9  |-  ( ( dom  (/)  =  (/)  /\  x  e.  A )  <->  ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
13 orcom 730 . . . . . . . . 9  |-  ( ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
142, 12, 133bitri 206 . . . . . . . 8  |-  ( x  e.  A  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
1514abbii 2323 . . . . . . 7  |-  { x  |  x  e.  A }  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }
16 abid2 2328 . . . . . . 7  |-  { x  |  x  e.  A }  =  A
1715, 16eqtr3i 2230 . . . . . 6  |-  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  =  A
18 elex 2788 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
1917, 18eqeltrid 2294 . . . . 5  |-  ( A  e.  V  ->  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )
20 0ex 4187 . . . . . . 7  |-  (/)  e.  _V
21 dmeq 4897 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
2221eqeq1d 2216 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( dom  g  =  suc  m  <->  dom  (/)  =  suc  m ) )
23 fveq1 5598 . . . . . . . . . . . . . 14  |-  ( g  =  (/)  ->  ( g `
 m )  =  ( (/) `  m ) )
2423fveq2d 5603 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  ( F `
 ( g `  m ) )  =  ( F `  ( (/) `  m ) ) )
2524eleq2d 2277 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( x  e.  ( F `  ( g `  m
) )  <->  x  e.  ( F `  ( (/) `  m ) ) ) )
2622, 25anbi12d 473 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) ) )
2726rexbidv 2509 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
2821eqeq1d 2216 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( dom  g  =  (/)  <->  dom  (/)  =  (/) ) )
2928anbi1d 465 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <-> 
( dom  (/)  =  (/)  /\  x  e.  A ) ) )
3027, 29orbi12d 795 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) ) )
3130abbidv 2325 . . . . . . . 8  |-  ( g  =  (/)  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
32 eqid 2207 . . . . . . . 8  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3331, 32fvmptg 5678 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  {
x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )  ->  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3420, 33mpan 424 . . . . . 6  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3534, 17eqtrdi 2256 . . . . 5  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3619, 35syl 14 . . . 4  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3736, 18eqeltrd 2284 . . 3  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V )
38 df-frec 6500 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
3938fveq1i 5600 . . . . 5  |-  (frec ( F ,  A ) `
 (/) )  =  ( (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )
40 peano1 4660 . . . . . 6  |-  (/)  e.  om
41 fvres 5623 . . . . . 6  |-  ( (/)  e.  om  ->  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) ) )
4240, 41ax-mp 5 . . . . 5  |-  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
4339, 42eqtri 2228 . . . 4  |-  (frec ( F ,  A ) `
 (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
44 eqid 2207 . . . . 5  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4544tfr0 6432 . . . 4  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )  =  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4643, 45eqtrid 2252 . . 3  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (frec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4737, 46syl 14 . 2  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4847, 36eqtrd 2240 1  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193    =/= wne 2378   E.wrex 2487   _Vcvv 2776   (/)c0 3468    |-> cmpt 4121   suc csuc 4430   omcom 4656   dom cdm 4693    |` cres 4695   ` cfv 5290  recscrecs 6413  freccfrec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-recs 6414  df-frec 6500
This theorem is referenced by:  frecrdg  6517  frec2uz0d  10581  frec2uzrdg  10591  frecuzrdg0  10595  frecuzrdgg  10598  frecuzrdg0t  10604  seq3val  10642  seqvalcd  10643
  Copyright terms: Public domain W3C validator