| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec0g | Unicode version | ||
| Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) |
| Ref | Expression |
|---|---|
| frec0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 4881 |
. . . . . . . . . 10
| |
| 2 | 1 | biantrur 303 |
. . . . . . . . 9
|
| 3 | vex 2766 |
. . . . . . . . . . . . . . . 16
| |
| 4 | nsuceq0g 4454 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | nesymi 2413 |
. . . . . . . . . . . . . 14
|
| 7 | 1 | eqeq1i 2204 |
. . . . . . . . . . . . . 14
|
| 8 | 6, 7 | mtbir 672 |
. . . . . . . . . . . . 13
|
| 9 | 8 | intnanr 931 |
. . . . . . . . . . . 12
|
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
|
| 11 | 10 | nrex 2589 |
. . . . . . . . . 10
|
| 12 | 11 | biorfi 747 |
. . . . . . . . 9
|
| 13 | orcom 729 |
. . . . . . . . 9
| |
| 14 | 2, 12, 13 | 3bitri 206 |
. . . . . . . 8
|
| 15 | 14 | abbii 2312 |
. . . . . . 7
|
| 16 | abid2 2317 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtr3i 2219 |
. . . . . 6
|
| 18 | elex 2774 |
. . . . . 6
| |
| 19 | 17, 18 | eqeltrid 2283 |
. . . . 5
|
| 20 | 0ex 4161 |
. . . . . . 7
| |
| 21 | dmeq 4867 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2205 |
. . . . . . . . . . . 12
|
| 23 | fveq1 5560 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | fveq2d 5565 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eleq2d 2266 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . . 11
|
| 27 | 26 | rexbidv 2498 |
. . . . . . . . . 10
|
| 28 | 21 | eqeq1d 2205 |
. . . . . . . . . . 11
|
| 29 | 28 | anbi1d 465 |
. . . . . . . . . 10
|
| 30 | 27, 29 | orbi12d 794 |
. . . . . . . . 9
|
| 31 | 30 | abbidv 2314 |
. . . . . . . 8
|
| 32 | eqid 2196 |
. . . . . . . 8
| |
| 33 | 31, 32 | fvmptg 5640 |
. . . . . . 7
|
| 34 | 20, 33 | mpan 424 |
. . . . . 6
|
| 35 | 34, 17 | eqtrdi 2245 |
. . . . 5
|
| 36 | 19, 35 | syl 14 |
. . . 4
|
| 37 | 36, 18 | eqeltrd 2273 |
. . 3
|
| 38 | df-frec 6458 |
. . . . . 6
| |
| 39 | 38 | fveq1i 5562 |
. . . . 5
|
| 40 | peano1 4631 |
. . . . . 6
| |
| 41 | fvres 5585 |
. . . . . 6
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . 5
|
| 43 | 39, 42 | eqtri 2217 |
. . . 4
|
| 44 | eqid 2196 |
. . . . 5
| |
| 45 | 44 | tfr0 6390 |
. . . 4
|
| 46 | 43, 45 | eqtrid 2241 |
. . 3
|
| 47 | 37, 46 | syl 14 |
. 2
|
| 48 | 47, 36 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-recs 6372 df-frec 6458 |
| This theorem is referenced by: frecrdg 6475 frec2uz0d 10508 frec2uzrdg 10518 frecuzrdg0 10522 frecuzrdgg 10525 frecuzrdg0t 10531 seq3val 10569 seqvalcd 10570 |
| Copyright terms: Public domain | W3C validator |