| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frec0g | Unicode version | ||
| Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.) |
| Ref | Expression |
|---|---|
| frec0g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dm0 4937 |
. . . . . . . . . 10
| |
| 2 | 1 | biantrur 303 |
. . . . . . . . 9
|
| 3 | vex 2802 |
. . . . . . . . . . . . . . . 16
| |
| 4 | nsuceq0g 4509 |
. . . . . . . . . . . . . . . 16
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . . . . . 15
|
| 6 | 5 | nesymi 2446 |
. . . . . . . . . . . . . 14
|
| 7 | 1 | eqeq1i 2237 |
. . . . . . . . . . . . . 14
|
| 8 | 6, 7 | mtbir 675 |
. . . . . . . . . . . . 13
|
| 9 | 8 | intnanr 935 |
. . . . . . . . . . . 12
|
| 10 | 9 | a1i 9 |
. . . . . . . . . . 11
|
| 11 | 10 | nrex 2622 |
. . . . . . . . . 10
|
| 12 | 11 | biorfi 751 |
. . . . . . . . 9
|
| 13 | orcom 733 |
. . . . . . . . 9
| |
| 14 | 2, 12, 13 | 3bitri 206 |
. . . . . . . 8
|
| 15 | 14 | abbii 2345 |
. . . . . . 7
|
| 16 | abid2 2350 |
. . . . . . 7
| |
| 17 | 15, 16 | eqtr3i 2252 |
. . . . . 6
|
| 18 | elex 2811 |
. . . . . 6
| |
| 19 | 17, 18 | eqeltrid 2316 |
. . . . 5
|
| 20 | 0ex 4211 |
. . . . . . 7
| |
| 21 | dmeq 4923 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | eqeq1d 2238 |
. . . . . . . . . . . 12
|
| 23 | fveq1 5626 |
. . . . . . . . . . . . . 14
| |
| 24 | 23 | fveq2d 5631 |
. . . . . . . . . . . . 13
|
| 25 | 24 | eleq2d 2299 |
. . . . . . . . . . . 12
|
| 26 | 22, 25 | anbi12d 473 |
. . . . . . . . . . 11
|
| 27 | 26 | rexbidv 2531 |
. . . . . . . . . 10
|
| 28 | 21 | eqeq1d 2238 |
. . . . . . . . . . 11
|
| 29 | 28 | anbi1d 465 |
. . . . . . . . . 10
|
| 30 | 27, 29 | orbi12d 798 |
. . . . . . . . 9
|
| 31 | 30 | abbidv 2347 |
. . . . . . . 8
|
| 32 | eqid 2229 |
. . . . . . . 8
| |
| 33 | 31, 32 | fvmptg 5710 |
. . . . . . 7
|
| 34 | 20, 33 | mpan 424 |
. . . . . 6
|
| 35 | 34, 17 | eqtrdi 2278 |
. . . . 5
|
| 36 | 19, 35 | syl 14 |
. . . 4
|
| 37 | 36, 18 | eqeltrd 2306 |
. . 3
|
| 38 | df-frec 6537 |
. . . . . 6
| |
| 39 | 38 | fveq1i 5628 |
. . . . 5
|
| 40 | peano1 4686 |
. . . . . 6
| |
| 41 | fvres 5651 |
. . . . . 6
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . 5
|
| 43 | 39, 42 | eqtri 2250 |
. . . 4
|
| 44 | eqid 2229 |
. . . . 5
| |
| 45 | 44 | tfr0 6469 |
. . . 4
|
| 46 | 43, 45 | eqtrid 2274 |
. . 3
|
| 47 | 37, 46 | syl 14 |
. 2
|
| 48 | 47, 36 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-recs 6451 df-frec 6537 |
| This theorem is referenced by: frecrdg 6554 frec2uz0d 10621 frec2uzrdg 10631 frecuzrdg0 10635 frecuzrdgg 10638 frecuzrdg0t 10644 seq3val 10682 seqvalcd 10683 |
| Copyright terms: Public domain | W3C validator |