ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec0g Unicode version

Theorem frec0g 6455
Description: The initial value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 7-May-2020.)
Assertion
Ref Expression
frec0g  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )

Proof of Theorem frec0g
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dm0 4880 . . . . . . . . . 10  |-  dom  (/)  =  (/)
21biantrur 303 . . . . . . . . 9  |-  ( x  e.  A  <->  ( dom  (/)  =  (/)  /\  x  e.  A ) )
3 vex 2766 . . . . . . . . . . . . . . . 16  |-  m  e. 
_V
4 nsuceq0g 4453 . . . . . . . . . . . . . . . 16  |-  ( m  e.  _V  ->  suc  m  =/=  (/) )
53, 4ax-mp 5 . . . . . . . . . . . . . . 15  |-  suc  m  =/=  (/)
65nesymi 2413 . . . . . . . . . . . . . 14  |-  -.  (/)  =  suc  m
71eqeq1i 2204 . . . . . . . . . . . . . 14  |-  ( dom  (/)  =  suc  m  <->  (/)  =  suc  m )
86, 7mtbir 672 . . . . . . . . . . . . 13  |-  -.  dom  (/)  =  suc  m
98intnanr 931 . . . . . . . . . . . 12  |-  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
109a1i 9 . . . . . . . . . . 11  |-  ( m  e.  om  ->  -.  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) )
1110nrex 2589 . . . . . . . . . 10  |-  -.  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )
1211biorfi 747 . . . . . . . . 9  |-  ( ( dom  (/)  =  (/)  /\  x  e.  A )  <->  ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
13 orcom 729 . . . . . . . . 9  |-  ( ( ( dom  (/)  =  (/)  /\  x  e.  A )  \/  E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
142, 12, 133bitri 206 . . . . . . . 8  |-  ( x  e.  A  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) )
1514abbii 2312 . . . . . . 7  |-  { x  |  x  e.  A }  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }
16 abid2 2317 . . . . . . 7  |-  { x  |  x  e.  A }  =  A
1715, 16eqtr3i 2219 . . . . . 6  |-  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  =  A
18 elex 2774 . . . . . 6  |-  ( A  e.  V  ->  A  e.  _V )
1917, 18eqeltrid 2283 . . . . 5  |-  ( A  e.  V  ->  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )
20 0ex 4160 . . . . . . 7  |-  (/)  e.  _V
21 dmeq 4866 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  dom  g  =  dom  (/) )
2221eqeq1d 2205 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( dom  g  =  suc  m  <->  dom  (/)  =  suc  m ) )
23 fveq1 5557 . . . . . . . . . . . . . 14  |-  ( g  =  (/)  ->  ( g `
 m )  =  ( (/) `  m ) )
2423fveq2d 5562 . . . . . . . . . . . . 13  |-  ( g  =  (/)  ->  ( F `
 ( g `  m ) )  =  ( F `  ( (/) `  m ) ) )
2524eleq2d 2266 . . . . . . . . . . . 12  |-  ( g  =  (/)  ->  ( x  e.  ( F `  ( g `  m
) )  <->  x  e.  ( F `  ( (/) `  m ) ) ) )
2622, 25anbi12d 473 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) ) ) )
2726rexbidv 2498 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  <->  E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) ) ) )
2821eqeq1d 2205 . . . . . . . . . . 11  |-  ( g  =  (/)  ->  ( dom  g  =  (/)  <->  dom  (/)  =  (/) ) )
2928anbi1d 465 . . . . . . . . . 10  |-  ( g  =  (/)  ->  ( ( dom  g  =  (/)  /\  x  e.  A )  <-> 
( dom  (/)  =  (/)  /\  x  e.  A ) ) )
3027, 29orbi12d 794 . . . . . . . . 9  |-  ( g  =  (/)  ->  ( ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) ) )
3130abbidv 2314 . . . . . . . 8  |-  ( g  =  (/)  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m ) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
32 eqid 2196 . . . . . . . 8  |-  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3331, 32fvmptg 5637 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  {
x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V )  ->  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3420, 33mpan 424 . . . . . 6  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) } )
3534, 17eqtrdi 2245 . . . . 5  |-  ( { x  |  ( E. m  e.  om  ( dom  (/)  =  suc  m  /\  x  e.  ( F `  ( (/) `  m
) ) )  \/  ( dom  (/)  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3619, 35syl 14 . . . 4  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  =  A )
3736, 18eqeltrd 2273 . . 3  |-  ( A  e.  V  ->  (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V )
38 df-frec 6449 . . . . . 6  |- frec ( F ,  A )  =  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om )
3938fveq1i 5559 . . . . 5  |-  (frec ( F ,  A ) `
 (/) )  =  ( (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )
40 peano1 4630 . . . . . 6  |-  (/)  e.  om
41 fvres 5582 . . . . . 6  |-  ( (/)  e.  om  ->  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) ) )
4240, 41ax-mp 5 . . . . 5  |-  ( (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  |`  om ) `  (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
4339, 42eqtri 2217 . . . 4  |-  (frec ( F ,  A ) `
 (/) )  =  (recs ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )
44 eqid 2196 . . . . 5  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
4544tfr0 6381 . . . 4  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) ) `  (/) )  =  ( ( g  e. 
_V  |->  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4643, 45eqtrid 2241 . . 3  |-  ( ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) )  e. 
_V  ->  (frec ( F ,  A ) `  (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4737, 46syl 14 . 2  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) `  (/) ) )
4847, 36eqtrd 2229 1  |-  ( A  e.  V  ->  (frec ( F ,  A ) `
 (/) )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182    =/= wne 2367   E.wrex 2476   _Vcvv 2763   (/)c0 3450    |-> cmpt 4094   suc csuc 4400   omcom 4626   dom cdm 4663    |` cres 4665   ` cfv 5258  recscrecs 6362  freccfrec 6448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-recs 6363  df-frec 6449
This theorem is referenced by:  frecrdg  6466  frec2uz0d  10491  frec2uzrdg  10501  frecuzrdg0  10505  frecuzrdgg  10508  frecuzrdg0t  10514  seq3val  10552  seqvalcd  10553
  Copyright terms: Public domain W3C validator