Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel Unicode version

Theorem bj-intabssel 15281
Description: Version of intss1 3885 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf  |-  F/_ x A
Assertion
Ref Expression
bj-intabssel  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3  |-  F/_ x A
21nfsbc1 3003 . . 3  |-  F/ x [. A  /  x ]. ph
3 sbceq1a 2995 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
41, 2, 3elabgf 2902 . 2  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  [. A  /  x ]. ph ) )
5 intss1 3885 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5biimtrrdi 164 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164   {cab 2179   F/_wnfc 2323   [.wsbc 2985    C_ wss 3153   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-sbc 2986  df-in 3159  df-ss 3166  df-int 3871
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator