Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel Unicode version

Theorem bj-intabssel 16153
Description: Version of intss1 3938 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf  |-  F/_ x A
Assertion
Ref Expression
bj-intabssel  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3  |-  F/_ x A
21nfsbc1 3046 . . 3  |-  F/ x [. A  /  x ]. ph
3 sbceq1a 3038 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
41, 2, 3elabgf 2945 . 2  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  [. A  /  x ]. ph ) )
5 intss1 3938 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5biimtrrdi 164 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200   {cab 2215   F/_wnfc 2359   [.wsbc 3028    C_ wss 3197   |^|cint 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-in 3203  df-ss 3210  df-int 3924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator