Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel Unicode version

Theorem bj-intabssel 13630
Description: Version of intss1 3838 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf  |-  F/_ x A
Assertion
Ref Expression
bj-intabssel  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3  |-  F/_ x A
21nfsbc1 2967 . . 3  |-  F/ x [. A  /  x ]. ph
3 sbceq1a 2959 . . 3  |-  ( x  =  A  ->  ( ph 
<-> 
[. A  /  x ]. ph ) )
41, 2, 3elabgf 2867 . 2  |-  ( A  e.  V  ->  ( A  e.  { x  |  ph }  <->  [. A  /  x ]. ph ) )
5 intss1 3838 . 2  |-  ( A  e.  { x  | 
ph }  ->  |^| { x  |  ph }  C_  A
)
64, 5syl6bir 163 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  ->  |^| { x  |  ph }  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   {cab 2151   F/_wnfc 2294   [.wsbc 2950    C_ wss 3115   |^|cint 3823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-v 2727  df-sbc 2951  df-in 3121  df-ss 3128  df-int 3824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator