Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel1 Unicode version

Theorem bj-intabssel1 12578
 Description: Version of intss1 3733 using a class abstraction and implicit substitution. Closed form of intmin3 3745. (Contributed by BJ, 29-Nov-2019.)
Hypotheses
Ref Expression
bj-intabssel1.nf
bj-intabssel1.nf2
bj-intabssel1.is
Assertion
Ref Expression
bj-intabssel1

Proof of Theorem bj-intabssel1
StepHypRef Expression
1 bj-intabssel1.nf . . 3
2 bj-intabssel1.nf2 . . 3
3 bj-intabssel1.is . . 3
41, 2, 3elabgf2 12568 . 2
5 intss1 3733 . 2
64, 5syl6 33 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1299  wnf 1404   wcel 1448  cab 2086  wnfc 2227   wss 3021  cint 3718 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082 This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-v 2643  df-in 3027  df-ss 3034  df-int 3719 This theorem is referenced by:  bj-omssind  12718
 Copyright terms: Public domain W3C validator