Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intabssel1 | Unicode version |
Description: Version of intss1 3838 using a class abstraction and implicit substitution. Closed form of intmin3 3850. (Contributed by BJ, 29-Nov-2019.) |
Ref | Expression |
---|---|
bj-intabssel1.nf | |
bj-intabssel1.nf2 | |
bj-intabssel1.is |
Ref | Expression |
---|---|
bj-intabssel1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-intabssel1.nf | . . 3 | |
2 | bj-intabssel1.nf2 | . . 3 | |
3 | bj-intabssel1.is | . . 3 | |
4 | 1, 2, 3 | elabgf2 13621 | . 2 |
5 | intss1 3838 | . 2 | |
6 | 4, 5 | syl6 33 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wnf 1448 wcel 2136 cab 2151 wnfc 2294 wss 3115 cint 3823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-v 2727 df-in 3121 df-ss 3128 df-int 3824 |
This theorem is referenced by: bj-omssind 13777 |
Copyright terms: Public domain | W3C validator |