![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bir | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6bir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6bir |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 156 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl6bir.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: exdistrfor 1728 cbvexdh 1849 repizf2 3997 issref 4814 fnun 5120 ovigg 5765 tfrlem9 6084 tfri3 6132 ordge1n0im 6200 nntri3or 6254 updjud 6773 axprecex 7415 peano5nnnn 7427 peano5nni 8425 zeo 8851 nn0ind-raph 8863 fzm1 9514 fzind2 9650 fzfig 9837 bcpasc 10174 climrecvg1n 10737 oddnn02np1 11158 oddge22np1 11159 evennn02n 11160 evennn2n 11161 gcdaddm 11253 coprmdvds1 11351 qredeq 11356 fiinopn 11601 bj-intabssel 11689 |
Copyright terms: Public domain | W3C validator |