ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6bir Unicode version

Theorem syl6bir 163
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
syl6bir.1  |-  ( ph  ->  ( ch  <->  ps )
)
syl6bir.2  |-  ( ch 
->  th )
Assertion
Ref Expression
syl6bir  |-  ( ph  ->  ( ps  ->  th )
)

Proof of Theorem syl6bir
StepHypRef Expression
1 syl6bir.1 . . 3  |-  ( ph  ->  ( ch  <->  ps )
)
21biimprd 157 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
3 syl6bir.2 . 2  |-  ( ch 
->  th )
42, 3syl6 33 1  |-  ( ph  ->  ( ps  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  exdistrfor  1788  cbvexdh  1914  repizf2  4141  issref  4986  fnun  5294  ovigg  5962  tfrlem9  6287  tfri3  6335  ordge1n0im  6404  nntri3or  6461  updjud  7047  axprecex  7821  peano5nnnn  7833  peano5nni  8860  zeo  9296  nn0ind-raph  9308  fzm1  10035  fzind2  10174  fzfig  10365  bcpasc  10679  climrecvg1n  11289  oddnn02np1  11817  oddge22np1  11818  evennn02n  11819  evennn2n  11820  gcdaddm  11917  coprmdvds1  12023  qredeq  12028  fiinopn  12642  zabsle1  13540  bj-intabssel  13670  triap  13908
  Copyright terms: Public domain W3C validator