![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6bir | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
syl6bir.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6bir.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6bir |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6bir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimprd 158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl6bir.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: exdistrfor 1800 cbvexdh 1926 repizf2 4164 issref 5013 fnun 5324 ovigg 5997 tfrlem9 6322 tfri3 6370 ordge1n0im 6439 nntri3or 6496 updjud 7083 axprecex 7881 peano5nnnn 7893 peano5nni 8924 zeo 9360 nn0ind-raph 9372 fzm1 10102 fzind2 10241 fzfig 10432 bcpasc 10748 climrecvg1n 11358 oddnn02np1 11887 oddge22np1 11888 evennn02n 11889 evennn2n 11890 gcdaddm 11987 coprmdvds1 12093 qredeq 12098 fiinopn 13589 zabsle1 14485 bj-intabssel 14626 triap 14862 |
Copyright terms: Public domain | W3C validator |