Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel GIF version

Theorem bj-intabssel 16111
Description: Version of intss1 3937 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf 𝑥𝐴
Assertion
Ref Expression
bj-intabssel (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3 𝑥𝐴
21nfsbc1 3046 . . 3 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 3038 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
41, 2, 3elabgf 2945 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑))
5 intss1 3937 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5biimtrrdi 164 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  {cab 2215  wnfc 2359  [wsbc 3028  wss 3197   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator