| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intabssel | GIF version | ||
| Description: Version of intss1 3937 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-intabssel.nf | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| bj-intabssel | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-intabssel.nf | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfsbc1 3046 | . . 3 ⊢ Ⅎ𝑥[𝐴 / 𝑥]𝜑 |
| 3 | sbceq1a 3038 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | elabgf 2945 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ [𝐴 / 𝑥]𝜑)) |
| 5 | intss1 3937 | . 2 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴) | |
| 6 | 4, 5 | biimtrrdi 164 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 → ∩ {𝑥 ∣ 𝜑} ⊆ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 {cab 2215 Ⅎwnfc 2359 [wsbc 3028 ⊆ wss 3197 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-sbc 3029 df-in 3203 df-ss 3210 df-int 3923 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |