Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel GIF version

Theorem bj-intabssel 15435
Description: Version of intss1 3889 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf 𝑥𝐴
Assertion
Ref Expression
bj-intabssel (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3 𝑥𝐴
21nfsbc1 3007 . . 3 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 2999 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
41, 2, 3elabgf 2906 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑))
5 intss1 3889 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5biimtrrdi 164 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  {cab 2182  wnfc 2326  [wsbc 2989  wss 3157   cint 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-sbc 2990  df-in 3163  df-ss 3170  df-int 3875
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator