Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intabssel GIF version

Theorem bj-intabssel 15589
Description: Version of intss1 3899 using a class abstraction and explicit substitution. (Contributed by BJ, 29-Nov-2019.)
Hypothesis
Ref Expression
bj-intabssel.nf 𝑥𝐴
Assertion
Ref Expression
bj-intabssel (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))

Proof of Theorem bj-intabssel
StepHypRef Expression
1 bj-intabssel.nf . . 3 𝑥𝐴
21nfsbc1 3015 . . 3 𝑥[𝐴 / 𝑥]𝜑
3 sbceq1a 3007 . . 3 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
41, 2, 3elabgf 2914 . 2 (𝐴𝑉 → (𝐴 ∈ {𝑥𝜑} ↔ [𝐴 / 𝑥]𝜑))
5 intss1 3899 . 2 (𝐴 ∈ {𝑥𝜑} → {𝑥𝜑} ⊆ 𝐴)
64, 5biimtrrdi 164 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑 {𝑥𝜑} ⊆ 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2175  {cab 2190  wnfc 2334  [wsbc 2997  wss 3165   cint 3884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-sbc 2998  df-in 3171  df-ss 3178  df-int 3885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator