Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intss1 | Unicode version |
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.) |
Ref | Expression |
---|---|
intss1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2729 | . . . 4 | |
2 | 1 | elint 3830 | . . 3 |
3 | eleq1 2229 | . . . . . 6 | |
4 | eleq2 2230 | . . . . . 6 | |
5 | 3, 4 | imbi12d 233 | . . . . 5 |
6 | 5 | spcgv 2813 | . . . 4 |
7 | 6 | pm2.43a 51 | . . 3 |
8 | 2, 7 | syl5bi 151 | . 2 |
9 | 8 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1341 wceq 1343 wcel 2136 wss 3116 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: intminss 3849 intmin3 3851 intab 3853 int0el 3854 trintssm 4096 inteximm 4128 onnmin 4545 peano5 4575 peano5nnnn 7833 peano5nni 8860 dfuzi 9301 bj-intabssel 13670 bj-intabssel1 13671 |
Copyright terms: Public domain | W3C validator |