ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 Unicode version

Theorem intss1 3822
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1  |-  ( A  e.  B  ->  |^| B  C_  A )

Proof of Theorem intss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2715 . . . 4  |-  x  e. 
_V
21elint 3813 . . 3  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
3 eleq1 2220 . . . . . 6  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
4 eleq2 2221 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
53, 4imbi12d 233 . . . . 5  |-  ( y  =  A  ->  (
( y  e.  B  ->  x  e.  y )  <-> 
( A  e.  B  ->  x  e.  A ) ) )
65spcgv 2799 . . . 4  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  ( A  e.  B  ->  x  e.  A ) ) )
76pm2.43a 51 . . 3  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  x  e.  A ) )
82, 7syl5bi 151 . 2  |-  ( A  e.  B  ->  (
x  e.  |^| B  ->  x  e.  A ) )
98ssrdv 3134 1  |-  ( A  e.  B  ->  |^| B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1333    = wceq 1335    e. wcel 2128    C_ wss 3102   |^|cint 3807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-ss 3115  df-int 3808
This theorem is referenced by:  intminss  3832  intmin3  3834  intab  3836  int0el  3837  trintssm  4078  inteximm  4110  onnmin  4527  peano5  4557  peano5nnnn  7812  peano5nni  8836  dfuzi  9274  bj-intabssel  13374  bj-intabssel1  13375
  Copyright terms: Public domain W3C validator