ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 Unicode version

Theorem intss1 3754
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1  |-  ( A  e.  B  ->  |^| B  C_  A )

Proof of Theorem intss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2661 . . . 4  |-  x  e. 
_V
21elint 3745 . . 3  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
3 eleq1 2178 . . . . . 6  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
4 eleq2 2179 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
53, 4imbi12d 233 . . . . 5  |-  ( y  =  A  ->  (
( y  e.  B  ->  x  e.  y )  <-> 
( A  e.  B  ->  x  e.  A ) ) )
65spcgv 2745 . . . 4  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  ( A  e.  B  ->  x  e.  A ) ) )
76pm2.43a 51 . . 3  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  x  e.  A ) )
82, 7syl5bi 151 . 2  |-  ( A  e.  B  ->  (
x  e.  |^| B  ->  x  e.  A ) )
98ssrdv 3071 1  |-  ( A  e.  B  ->  |^| B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1312    = wceq 1314    e. wcel 1463    C_ wss 3039   |^|cint 3739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-in 3045  df-ss 3052  df-int 3740
This theorem is referenced by:  intminss  3764  intmin3  3766  intab  3768  int0el  3769  trintssm  4010  inteximm  4042  onnmin  4451  peano5  4480  peano5nnnn  7664  peano5nni  8683  dfuzi  9115  bj-intabssel  12830  bj-intabssel1  12831
  Copyright terms: Public domain W3C validator