ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 Unicode version

Theorem intss1 3698
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1  |-  ( A  e.  B  ->  |^| B  C_  A )

Proof of Theorem intss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2622 . . . 4  |-  x  e. 
_V
21elint 3689 . . 3  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
3 eleq1 2150 . . . . . 6  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
4 eleq2 2151 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
53, 4imbi12d 232 . . . . 5  |-  ( y  =  A  ->  (
( y  e.  B  ->  x  e.  y )  <-> 
( A  e.  B  ->  x  e.  A ) ) )
65spcgv 2706 . . . 4  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  ( A  e.  B  ->  x  e.  A ) ) )
76pm2.43a 50 . . 3  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  x  e.  A ) )
82, 7syl5bi 150 . 2  |-  ( A  e.  B  ->  (
x  e.  |^| B  ->  x  e.  A ) )
98ssrdv 3029 1  |-  ( A  e.  B  ->  |^| B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1287    = wceq 1289    e. wcel 1438    C_ wss 2997   |^|cint 3683
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-in 3003  df-ss 3010  df-int 3684
This theorem is referenced by:  intminss  3708  intmin3  3710  intab  3712  int0el  3713  trintssm  3944  inteximm  3977  onnmin  4374  peano5  4403  peano5nnnn  7406  peano5nni  8397  dfuzi  8826  bj-intabssel  11335  bj-intabssel1  11336
  Copyright terms: Public domain W3C validator