ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intss1 Unicode version

Theorem intss1 3900
Description: An element of a class includes the intersection of the class. Exercise 4 of [TakeutiZaring] p. 44 (with correction), generalized to classes. (Contributed by NM, 18-Nov-1995.)
Assertion
Ref Expression
intss1  |-  ( A  e.  B  ->  |^| B  C_  A )

Proof of Theorem intss1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2775 . . . 4  |-  x  e. 
_V
21elint 3891 . . 3  |-  ( x  e.  |^| B  <->  A. y
( y  e.  B  ->  x  e.  y ) )
3 eleq1 2268 . . . . . 6  |-  ( y  =  A  ->  (
y  e.  B  <->  A  e.  B ) )
4 eleq2 2269 . . . . . 6  |-  ( y  =  A  ->  (
x  e.  y  <->  x  e.  A ) )
53, 4imbi12d 234 . . . . 5  |-  ( y  =  A  ->  (
( y  e.  B  ->  x  e.  y )  <-> 
( A  e.  B  ->  x  e.  A ) ) )
65spcgv 2860 . . . 4  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  ( A  e.  B  ->  x  e.  A ) ) )
76pm2.43a 51 . . 3  |-  ( A  e.  B  ->  ( A. y ( y  e.  B  ->  x  e.  y )  ->  x  e.  A ) )
82, 7biimtrid 152 . 2  |-  ( A  e.  B  ->  (
x  e.  |^| B  ->  x  e.  A ) )
98ssrdv 3199 1  |-  ( A  e.  B  ->  |^| B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371    = wceq 1373    e. wcel 2176    C_ wss 3166   |^|cint 3885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-int 3886
This theorem is referenced by:  intminss  3910  intmin3  3912  intab  3914  int0el  3915  trintssm  4158  inteximm  4193  onnmin  4616  peano5  4646  peano5nnnn  8005  peano5nni  9039  dfuzi  9483  bj-intabssel  15725  bj-intabssel1  15726
  Copyright terms: Public domain W3C validator