Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg Unicode version

Theorem bj-rspg 15923
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2881 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa  |-  F/_ x A
bj-rspg.nfb  |-  F/_ x B
bj-rspg.nf2  |-  F/ x ps
bj-rspg.is  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-rspg  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3  |-  F/_ x A
2 bj-rspg.nfb . . 3  |-  F/_ x B
3 bj-rspg.nf2 . . 3  |-  F/ x ps
41, 2, 3bj-rspgt 15922 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) ) )
5 bj-rspg.is . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
64, 5mpg 1475 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778
This theorem is referenced by:  bj-bdfindisg  16083  bj-findisg  16115
  Copyright terms: Public domain W3C validator