Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg Unicode version

Theorem bj-rspg 14679
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2840 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa  |-  F/_ x A
bj-rspg.nfb  |-  F/_ x B
bj-rspg.nf2  |-  F/ x ps
bj-rspg.is  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-rspg  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3  |-  F/_ x A
2 bj-rspg.nfb . . 3  |-  F/_ x B
3 bj-rspg.nf2 . . 3  |-  F/ x ps
41, 2, 3bj-rspgt 14678 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) ) )
5 bj-rspg.is . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
64, 5mpg 1451 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   F/wnf 1460    e. wcel 2148   F/_wnfc 2306   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741
This theorem is referenced by:  bj-bdfindisg  14840  bj-findisg  14872
  Copyright terms: Public domain W3C validator