Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | Unicode version |
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2827 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bj-rspg.nfa | |
bj-rspg.nfb | |
bj-rspg.nf2 | |
bj-rspg.is |
Ref | Expression |
---|---|
bj-rspg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rspg.nfa | . . 3 | |
2 | bj-rspg.nfb | . . 3 | |
3 | bj-rspg.nf2 | . . 3 | |
4 | 1, 2, 3 | bj-rspgt 13677 | . 2 |
5 | bj-rspg.is | . 2 | |
6 | 4, 5 | mpg 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wnf 1448 wcel 2136 wnfc 2295 wral 2444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 |
This theorem is referenced by: bj-bdfindisg 13840 bj-findisg 13872 |
Copyright terms: Public domain | W3C validator |