Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg Unicode version

Theorem bj-rspg 13008
 Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2786 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa
bj-rspg.nfb
bj-rspg.nf2
bj-rspg.is
Assertion
Ref Expression
bj-rspg

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3
2 bj-rspg.nfb . . 3
3 bj-rspg.nf2 . . 3
41, 2, 3bj-rspgt 13007 . 2
5 bj-rspg.is . 2
64, 5mpg 1427 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1331  wnf 1436   wcel 1480  wnfc 2268  wral 2416 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-v 2688 This theorem is referenced by:  bj-bdfindisg  13160  bj-findisg  13192
 Copyright terms: Public domain W3C validator