Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg Unicode version

Theorem bj-rspg 13678
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2827 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa  |-  F/_ x A
bj-rspg.nfb  |-  F/_ x B
bj-rspg.nf2  |-  F/ x ps
bj-rspg.is  |-  ( x  =  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
bj-rspg  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3  |-  F/_ x A
2 bj-rspg.nfb . . 3  |-  F/_ x B
3 bj-rspg.nf2 . . 3  |-  F/ x ps
41, 2, 3bj-rspgt 13677 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) ) )
5 bj-rspg.is . 2  |-  ( x  =  A  ->  ( ph  ->  ps ) )
64, 5mpg 1439 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   F/wnf 1448    e. wcel 2136   F/_wnfc 2295   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  bj-bdfindisg  13840  bj-findisg  13872
  Copyright terms: Public domain W3C validator