![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | Unicode version |
Description: Version of bj-findis 15471 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15471 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 |
![]() ![]() ![]() ![]() |
bj-findis.nf1 |
![]() ![]() ![]() ![]() |
bj-findis.nfsuc |
![]() ![]() ![]() ![]() |
bj-findis.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-findis.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-findis.suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-findisg.nfa |
![]() ![]() ![]() ![]() |
bj-findisg.nfterm |
![]() ![]() ![]() ![]() |
bj-findisg.term |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-findisg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 |
. . 3
![]() ![]() ![]() ![]() | |
2 | bj-findis.nf1 |
. . 3
![]() ![]() ![]() ![]() | |
3 | bj-findis.nfsuc |
. . 3
![]() ![]() ![]() ![]() | |
4 | bj-findis.0 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | bj-findis.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | bj-findis.suc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 15471 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | bj-findisg.nfa |
. . 3
![]() ![]() ![]() ![]() | |
9 | nfcv 2336 |
. . 3
![]() ![]() ![]() ![]() | |
10 | bj-findisg.nfterm |
. . 3
![]() ![]() ![]() ![]() | |
11 | bj-findisg.term |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 8, 9, 10, 11 | bj-rspg 15279 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 7, 12 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4155 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-bd0 15305 ax-bdim 15306 ax-bdan 15307 ax-bdor 15308 ax-bdn 15309 ax-bdal 15310 ax-bdex 15311 ax-bdeq 15312 ax-bdel 15313 ax-bdsb 15314 ax-bdsep 15376 ax-infvn 15433 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-sn 3624 df-pr 3625 df-uni 3836 df-int 3871 df-suc 4402 df-iom 4623 df-bdc 15333 df-bj-ind 15419 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |