Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findisg | Unicode version |
Description: Version of bj-findis 14014 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 14014 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-findis.nf0 | |
bj-findis.nf1 | |
bj-findis.nfsuc | |
bj-findis.0 | |
bj-findis.1 | |
bj-findis.suc | |
bj-findisg.nfa | |
bj-findisg.nfterm | |
bj-findisg.term |
Ref | Expression |
---|---|
bj-findisg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-findis.nf0 | . . 3 | |
2 | bj-findis.nf1 | . . 3 | |
3 | bj-findis.nfsuc | . . 3 | |
4 | bj-findis.0 | . . 3 | |
5 | bj-findis.1 | . . 3 | |
6 | bj-findis.suc | . . 3 | |
7 | 1, 2, 3, 4, 5, 6 | bj-findis 14014 | . 2 |
8 | bj-findisg.nfa | . . 3 | |
9 | nfcv 2312 | . . 3 | |
10 | bj-findisg.nfterm | . . 3 | |
11 | bj-findisg.term | . . 3 | |
12 | 8, 9, 10, 11 | bj-rspg 13822 | . 2 |
13 | 7, 12 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wnf 1453 wcel 2141 wnfc 2299 wral 2448 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-bd0 13848 ax-bdim 13849 ax-bdan 13850 ax-bdor 13851 ax-bdn 13852 ax-bdal 13853 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-infvn 13976 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |