Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findisg Unicode version

Theorem bj-findisg 15710
Description: Version of bj-findis 15709 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15709 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-findis.nf0  |-  F/ x ps
bj-findis.nf1  |-  F/ x ch
bj-findis.nfsuc  |-  F/ x th
bj-findis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-findis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-findis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
bj-findisg.nfa  |-  F/_ x A
bj-findisg.nfterm  |-  F/ x ta
bj-findisg.term  |-  ( x  =  A  ->  ( ph  ->  ta ) )
Assertion
Ref Expression
bj-findisg  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)    ta( x, y)    A( x, y)

Proof of Theorem bj-findisg
StepHypRef Expression
1 bj-findis.nf0 . . 3  |-  F/ x ps
2 bj-findis.nf1 . . 3  |-  F/ x ch
3 bj-findis.nfsuc . . 3  |-  F/ x th
4 bj-findis.0 . . 3  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
5 bj-findis.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ch ) )
6 bj-findis.suc . . 3  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
71, 2, 3, 4, 5, 6bj-findis 15709 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
8 bj-findisg.nfa . . 3  |-  F/_ x A
9 nfcv 2339 . . 3  |-  F/_ x om
10 bj-findisg.nfterm . . 3  |-  F/ x ta
11 bj-findisg.term . . 3  |-  ( x  =  A  ->  ( ph  ->  ta ) )
128, 9, 10, 11bj-rspg 15517 . 2  |-  ( A. x  e.  om  ph  ->  ( A  e.  om  ->  ta ) )
137, 12syl 14 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1474    e. wcel 2167   F/_wnfc 2326   A.wral 2475   (/)c0 3451   suc csuc 4401   omcom 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4160  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-bd0 15543  ax-bdim 15544  ax-bdan 15545  ax-bdor 15546  ax-bdn 15547  ax-bdal 15548  ax-bdex 15549  ax-bdeq 15550  ax-bdel 15551  ax-bdsb 15552  ax-bdsep 15614  ax-infvn 15671
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-sn 3629  df-pr 3630  df-uni 3841  df-int 3876  df-suc 4407  df-iom 4628  df-bdc 15571  df-bj-ind 15657
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator