Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-findisg Unicode version

Theorem bj-findisg 15003
Description: Version of bj-findis 15002 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-findis 15002 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-findis.nf0  |-  F/ x ps
bj-findis.nf1  |-  F/ x ch
bj-findis.nfsuc  |-  F/ x th
bj-findis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-findis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-findis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
bj-findisg.nfa  |-  F/_ x A
bj-findisg.nfterm  |-  F/ x ta
bj-findisg.term  |-  ( x  =  A  ->  ( ph  ->  ta ) )
Assertion
Ref Expression
bj-findisg  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)    ta( x, y)    A( x, y)

Proof of Theorem bj-findisg
StepHypRef Expression
1 bj-findis.nf0 . . 3  |-  F/ x ps
2 bj-findis.nf1 . . 3  |-  F/ x ch
3 bj-findis.nfsuc . . 3  |-  F/ x th
4 bj-findis.0 . . 3  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
5 bj-findis.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ch ) )
6 bj-findis.suc . . 3  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
71, 2, 3, 4, 5, 6bj-findis 15002 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
8 bj-findisg.nfa . . 3  |-  F/_ x A
9 nfcv 2329 . . 3  |-  F/_ x om
10 bj-findisg.nfterm . . 3  |-  F/ x ta
11 bj-findisg.term . . 3  |-  ( x  =  A  ->  ( ph  ->  ta ) )
128, 9, 10, 11bj-rspg 14810 . 2  |-  ( A. x  e.  om  ph  ->  ( A  e.  om  ->  ta ) )
137, 12syl 14 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1363   F/wnf 1470    e. wcel 2158   F/_wnfc 2316   A.wral 2465   (/)c0 3434   suc csuc 4377   omcom 4601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-nul 4141  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-bd0 14836  ax-bdim 14837  ax-bdan 14838  ax-bdor 14839  ax-bdn 14840  ax-bdal 14841  ax-bdex 14842  ax-bdeq 14843  ax-bdel 14844  ax-bdsb 14845  ax-bdsep 14907  ax-infvn 14964
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-rab 2474  df-v 2751  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-sn 3610  df-pr 3611  df-uni 3822  df-int 3857  df-suc 4383  df-iom 4602  df-bdc 14864  df-bj-ind 14950
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator