| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspccv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 |
. . 3
| |
| 2 | 1 | rspcv 2880 |
. 2
|
| 3 | 2 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 |
| This theorem is referenced by: elinti 3908 ofrval 6192 supubti 7127 suplubti 7128 suplocsrlempr 7955 pitonn 7996 peano5uzti 9516 zindd 9526 1arith 12805 basis2 14635 tg2 14647 mopni 15069 metrest 15093 metcnpi 15102 metcnpi2 15103 plycj 15348 decidi 15931 sumdc2 15935 |
| Copyright terms: Public domain | W3C validator |