| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspccv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) | 
| Ref | Expression | 
|---|---|
| rspcv.1 | 
 | 
| Ref | Expression | 
|---|---|
| rspccv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rspcv.1 | 
. . 3
 | |
| 2 | 1 | rspcv 2864 | 
. 2
 | 
| 3 | 2 | com12 30 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 | 
| This theorem is referenced by: elinti 3883 ofrval 6146 supubti 7065 suplubti 7066 suplocsrlempr 7874 pitonn 7915 peano5uzti 9434 zindd 9444 1arith 12536 basis2 14284 tg2 14296 mopni 14718 metrest 14742 metcnpi 14751 metcnpi2 14752 plycj 14997 decidi 15441 sumdc2 15445 | 
| Copyright terms: Public domain | W3C validator |