ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccv Unicode version

Theorem rspccv 2836
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccv  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccv
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2835 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32com12 30 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2146   A.wral 2453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737
This theorem is referenced by:  elinti  3849  ofrval  6083  supubti  6988  suplubti  6989  suplocsrlempr  7781  pitonn  7822  peano5uzti  9332  zindd  9342  1arith  12330  basis2  13097  tg2  13111  mopni  13533  metrest  13557  metcnpi  13566  metcnpi2  13567  decidi  14087  sumdc2  14091
  Copyright terms: Public domain W3C validator