| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspccv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 |
. . 3
| |
| 2 | 1 | rspcv 2873 |
. 2
|
| 3 | 2 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: elinti 3894 ofrval 6169 supubti 7101 suplubti 7102 suplocsrlempr 7920 pitonn 7961 peano5uzti 9481 zindd 9491 1arith 12690 basis2 14520 tg2 14532 mopni 14954 metrest 14978 metcnpi 14987 metcnpi2 14988 plycj 15233 decidi 15731 sumdc2 15735 |
| Copyright terms: Public domain | W3C validator |