ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccv Unicode version

Theorem rspccv 2853
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccv  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccv
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2852 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32com12 30 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754
This theorem is referenced by:  elinti  3868  ofrval  6112  supubti  7023  suplubti  7024  suplocsrlempr  7831  pitonn  7872  peano5uzti  9386  zindd  9396  1arith  12394  basis2  13985  tg2  13997  mopni  14419  metrest  14443  metcnpi  14452  metcnpi2  14453  decidi  14985  sumdc2  14989
  Copyright terms: Public domain W3C validator