| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspccv | Unicode version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
| Ref | Expression |
|---|---|
| rspcv.1 |
|
| Ref | Expression |
|---|---|
| rspccv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcv.1 |
. . 3
| |
| 2 | 1 | rspcv 2903 |
. 2
|
| 3 | 2 | com12 30 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: elinti 3932 ofrval 6229 supubti 7166 suplubti 7167 suplocsrlempr 7994 pitonn 8035 peano5uzti 9555 zindd 9565 1arith 12890 basis2 14722 tg2 14734 mopni 15156 metrest 15180 metcnpi 15189 metcnpi2 15190 plycj 15435 decidi 16159 sumdc2 16163 |
| Copyright terms: Public domain | W3C validator |