ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspccv Unicode version

Theorem rspccv 2874
Description: Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.)
Hypothesis
Ref Expression
rspcv.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspccv  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem rspccv
StepHypRef Expression
1 rspcv.1 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
21rspcv 2873 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  ps ) )
32com12 30 1  |-  ( A. x  e.  B  ph  ->  ( A  e.  B  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774
This theorem is referenced by:  elinti  3894  ofrval  6169  supubti  7101  suplubti  7102  suplocsrlempr  7920  pitonn  7961  peano5uzti  9481  zindd  9491  1arith  12690  basis2  14520  tg2  14532  mopni  14954  metrest  14978  metcnpi  14987  metcnpi2  14988  plycj  15233  decidi  15731  sumdc2  15735
  Copyright terms: Public domain W3C validator