Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindisg Unicode version

Theorem bj-bdfindisg 13983
Description: Version of bj-bdfindis 13982 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 13982 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd  |- BOUNDED  ph
bj-bdfindis.nf0  |-  F/ x ps
bj-bdfindis.nf1  |-  F/ x ch
bj-bdfindis.nfsuc  |-  F/ x th
bj-bdfindis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-bdfindis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-bdfindis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
bj-bdfindisg.nfa  |-  F/_ x A
bj-bdfindisg.nfterm  |-  F/ x ta
bj-bdfindisg.term  |-  ( x  =  A  ->  ( ph  ->  ta ) )
Assertion
Ref Expression
bj-bdfindisg  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)    ta( x, y)    A( x, y)

Proof of Theorem bj-bdfindisg
StepHypRef Expression
1 bj-bdfindis.bd . . 3  |- BOUNDED  ph
2 bj-bdfindis.nf0 . . 3  |-  F/ x ps
3 bj-bdfindis.nf1 . . 3  |-  F/ x ch
4 bj-bdfindis.nfsuc . . 3  |-  F/ x th
5 bj-bdfindis.0 . . 3  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
6 bj-bdfindis.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ch ) )
7 bj-bdfindis.suc . . 3  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
81, 2, 3, 4, 5, 6, 7bj-bdfindis 13982 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
9 bj-bdfindisg.nfa . . 3  |-  F/_ x A
10 nfcv 2312 . . 3  |-  F/_ x om
11 bj-bdfindisg.nfterm . . 3  |-  F/ x ta
12 bj-bdfindisg.term . . 3  |-  ( x  =  A  ->  ( ph  ->  ta ) )
139, 10, 11, 12bj-rspg 13822 . 2  |-  ( A. x  e.  om  ph  ->  ( A  e.  om  ->  ta ) )
148, 13syl 14 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348   F/wnf 1453    e. wcel 2141   F/_wnfc 2299   A.wral 2448   (/)c0 3414   suc csuc 4350   omcom 4574  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-nul 4115  ax-pr 4194  ax-un 4418  ax-bd0 13848  ax-bdor 13851  ax-bdex 13854  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857  ax-bdsep 13919  ax-infvn 13976
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-suc 4356  df-iom 4575  df-bdc 13876  df-bj-ind 13962
This theorem is referenced by:  bj-nntrans  13986  bj-nnelirr  13988  bj-omtrans  13991
  Copyright terms: Public domain W3C validator