![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | Unicode version |
Description: Version of bj-bdfindis 15152 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15152 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd |
![]() ![]() |
bj-bdfindis.nf0 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nf1 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nfsuc |
![]() ![]() ![]() ![]() |
bj-bdfindis.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindisg.nfa |
![]() ![]() ![]() ![]() |
bj-bdfindisg.nfterm |
![]() ![]() ![]() ![]() |
bj-bdfindisg.term |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-bdfindisg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd |
. . 3
![]() ![]() | |
2 | bj-bdfindis.nf0 |
. . 3
![]() ![]() ![]() ![]() | |
3 | bj-bdfindis.nf1 |
. . 3
![]() ![]() ![]() ![]() | |
4 | bj-bdfindis.nfsuc |
. . 3
![]() ![]() ![]() ![]() | |
5 | bj-bdfindis.0 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | bj-bdfindis.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | bj-bdfindis.suc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 15152 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | bj-bdfindisg.nfa |
. . 3
![]() ![]() ![]() ![]() | |
10 | nfcv 2332 |
. . 3
![]() ![]() ![]() ![]() | |
11 | bj-bdfindisg.nfterm |
. . 3
![]() ![]() ![]() ![]() | |
12 | bj-bdfindisg.term |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 9, 10, 11, 12 | bj-rspg 14992 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 8, 13 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-nul 4144 ax-pr 4227 ax-un 4451 ax-bd0 15018 ax-bdor 15021 ax-bdex 15024 ax-bdeq 15025 ax-bdel 15026 ax-bdsb 15027 ax-bdsep 15089 ax-infvn 15146 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-sn 3613 df-pr 3614 df-uni 3825 df-int 3860 df-suc 4389 df-iom 4608 df-bdc 15046 df-bj-ind 15132 |
This theorem is referenced by: bj-nntrans 15156 bj-nnelirr 15158 bj-omtrans 15161 |
Copyright terms: Public domain | W3C validator |