![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | Unicode version |
Description: Version of bj-bdfindis 12108 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 12108 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd |
![]() ![]() |
bj-bdfindis.nf0 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nf1 |
![]() ![]() ![]() ![]() |
bj-bdfindis.nfsuc |
![]() ![]() ![]() ![]() |
bj-bdfindis.0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindis.suc |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
bj-bdfindisg.nfa |
![]() ![]() ![]() ![]() |
bj-bdfindisg.nfterm |
![]() ![]() ![]() ![]() |
bj-bdfindisg.term |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bj-bdfindisg |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd |
. . 3
![]() ![]() | |
2 | bj-bdfindis.nf0 |
. . 3
![]() ![]() ![]() ![]() | |
3 | bj-bdfindis.nf1 |
. . 3
![]() ![]() ![]() ![]() | |
4 | bj-bdfindis.nfsuc |
. . 3
![]() ![]() ![]() ![]() | |
5 | bj-bdfindis.0 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | bj-bdfindis.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | bj-bdfindis.suc |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 12108 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | bj-bdfindisg.nfa |
. . 3
![]() ![]() ![]() ![]() | |
10 | nfcv 2229 |
. . 3
![]() ![]() ![]() ![]() | |
11 | bj-bdfindisg.nfterm |
. . 3
![]() ![]() ![]() ![]() | |
12 | bj-bdfindisg.term |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | 9, 10, 11, 12 | bj-rspg 11953 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 8, 13 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-nul 3971 ax-pr 4045 ax-un 4269 ax-bd0 11970 ax-bdor 11973 ax-bdex 11976 ax-bdeq 11977 ax-bdel 11978 ax-bdsb 11979 ax-bdsep 12041 ax-infvn 12102 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-rab 2369 df-v 2622 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-sn 3456 df-pr 3457 df-uni 3660 df-int 3695 df-suc 4207 df-iom 4419 df-bdc 11998 df-bj-ind 12088 |
This theorem is referenced by: bj-nntrans 12112 bj-nnelirr 12114 bj-omtrans 12117 |
Copyright terms: Public domain | W3C validator |