Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindisg | Unicode version |
Description: Version of bj-bdfindis 14239 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 14239 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-bdfindis.bd | BOUNDED |
bj-bdfindis.nf0 | |
bj-bdfindis.nf1 | |
bj-bdfindis.nfsuc | |
bj-bdfindis.0 | |
bj-bdfindis.1 | |
bj-bdfindis.suc | |
bj-bdfindisg.nfa | |
bj-bdfindisg.nfterm | |
bj-bdfindisg.term |
Ref | Expression |
---|---|
bj-bdfindisg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-bdfindis.bd | . . 3 BOUNDED | |
2 | bj-bdfindis.nf0 | . . 3 | |
3 | bj-bdfindis.nf1 | . . 3 | |
4 | bj-bdfindis.nfsuc | . . 3 | |
5 | bj-bdfindis.0 | . . 3 | |
6 | bj-bdfindis.1 | . . 3 | |
7 | bj-bdfindis.suc | . . 3 | |
8 | 1, 2, 3, 4, 5, 6, 7 | bj-bdfindis 14239 | . 2 |
9 | bj-bdfindisg.nfa | . . 3 | |
10 | nfcv 2317 | . . 3 | |
11 | bj-bdfindisg.nfterm | . . 3 | |
12 | bj-bdfindisg.term | . . 3 | |
13 | 9, 10, 11, 12 | bj-rspg 14079 | . 2 |
14 | 8, 13 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wnf 1458 wcel 2146 wnfc 2304 wral 2453 c0 3420 csuc 4359 com 4583 BOUNDED wbd 14104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-nul 4124 ax-pr 4203 ax-un 4427 ax-bd0 14105 ax-bdor 14108 ax-bdex 14111 ax-bdeq 14112 ax-bdel 14113 ax-bdsb 14114 ax-bdsep 14176 ax-infvn 14233 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-suc 4365 df-iom 4584 df-bdc 14133 df-bj-ind 14219 |
This theorem is referenced by: bj-nntrans 14243 bj-nnelirr 14245 bj-omtrans 14248 |
Copyright terms: Public domain | W3C validator |