Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindisg Unicode version

Theorem bj-bdfindisg 15510
Description: Version of bj-bdfindis 15509 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 15509 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-bdfindis.bd  |- BOUNDED  ph
bj-bdfindis.nf0  |-  F/ x ps
bj-bdfindis.nf1  |-  F/ x ch
bj-bdfindis.nfsuc  |-  F/ x th
bj-bdfindis.0  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
bj-bdfindis.1  |-  ( x  =  y  ->  ( ph  ->  ch ) )
bj-bdfindis.suc  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
bj-bdfindisg.nfa  |-  F/_ x A
bj-bdfindisg.nfterm  |-  F/ x ta
bj-bdfindisg.term  |-  ( x  =  A  ->  ( ph  ->  ta ) )
Assertion
Ref Expression
bj-bdfindisg  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Distinct variable groups:    x, y    ph, y
Allowed substitution hints:    ph( x)    ps( x, y)    ch( x, y)    th( x, y)    ta( x, y)    A( x, y)

Proof of Theorem bj-bdfindisg
StepHypRef Expression
1 bj-bdfindis.bd . . 3  |- BOUNDED  ph
2 bj-bdfindis.nf0 . . 3  |-  F/ x ps
3 bj-bdfindis.nf1 . . 3  |-  F/ x ch
4 bj-bdfindis.nfsuc . . 3  |-  F/ x th
5 bj-bdfindis.0 . . 3  |-  ( x  =  (/)  ->  ( ps 
->  ph ) )
6 bj-bdfindis.1 . . 3  |-  ( x  =  y  ->  ( ph  ->  ch ) )
7 bj-bdfindis.suc . . 3  |-  ( x  =  suc  y  -> 
( th  ->  ph )
)
81, 2, 3, 4, 5, 6, 7bj-bdfindis 15509 . 2  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  A. x  e.  om  ph )
9 bj-bdfindisg.nfa . . 3  |-  F/_ x A
10 nfcv 2336 . . 3  |-  F/_ x om
11 bj-bdfindisg.nfterm . . 3  |-  F/ x ta
12 bj-bdfindisg.term . . 3  |-  ( x  =  A  ->  ( ph  ->  ta ) )
139, 10, 11, 12bj-rspg 15349 . 2  |-  ( A. x  e.  om  ph  ->  ( A  e.  om  ->  ta ) )
148, 13syl 14 1  |-  ( ( ps  /\  A. y  e.  om  ( ch  ->  th ) )  ->  ( A  e.  om  ->  ta ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   F/wnf 1471    e. wcel 2164   F/_wnfc 2323   A.wral 2472   (/)c0 3447   suc csuc 4397   omcom 4623  BOUNDED wbd 15374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4156  ax-pr 4239  ax-un 4465  ax-bd0 15375  ax-bdor 15378  ax-bdex 15381  ax-bdeq 15382  ax-bdel 15383  ax-bdsb 15384  ax-bdsep 15446  ax-infvn 15503
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624  df-bdc 15403  df-bj-ind 15489
This theorem is referenced by:  bj-nntrans  15513  bj-nnelirr  15515  bj-omtrans  15518
  Copyright terms: Public domain W3C validator