| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version | ||
| Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2865 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
| bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 1, 2, 3 | bj-rspgt 15516 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
| 5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 6 | 4, 5 | mpg 1465 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 Ⅎwnf 1474 ∈ wcel 2167 Ⅎwnfc 2326 ∀wral 2475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 |
| This theorem is referenced by: bj-bdfindisg 15678 bj-findisg 15710 |
| Copyright terms: Public domain | W3C validator |