Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version |
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2836 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | bj-rspgt 14096 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
6 | 4, 5 | mpg 1449 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 Ⅎwnf 1458 ∈ wcel 2146 Ⅎwnfc 2304 ∀wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 |
This theorem is referenced by: bj-bdfindisg 14258 bj-findisg 14290 |
Copyright terms: Public domain | W3C validator |