| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version | ||
| Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2904 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
| bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
| bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 1, 2, 3 | bj-rspgt 16150 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
| 5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
| 6 | 4, 5 | mpg 1497 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 Ⅎwnf 1506 ∈ wcel 2200 Ⅎwnfc 2359 ∀wral 2508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: bj-bdfindisg 16311 bj-findisg 16343 |
| Copyright terms: Public domain | W3C validator |