![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version |
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2861 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | bj-rspgt 15278 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
6 | 4, 5 | mpg 1462 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 Ⅎwnf 1471 ∈ wcel 2164 Ⅎwnfc 2323 ∀wral 2472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 |
This theorem is referenced by: bj-bdfindisg 15440 bj-findisg 15472 |
Copyright terms: Public domain | W3C validator |