Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg GIF version

Theorem bj-rspg 13668
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2827 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa 𝑥𝐴
bj-rspg.nfb 𝑥𝐵
bj-rspg.nf2 𝑥𝜓
bj-rspg.is (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-rspg (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3 𝑥𝐴
2 bj-rspg.nfb . . 3 𝑥𝐵
3 bj-rspg.nf2 . . 3 𝑥𝜓
41, 2, 3bj-rspgt 13667 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))
5 bj-rspg.is . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1439 1 (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wnf 1448  wcel 2136  wnfc 2295  wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728
This theorem is referenced by:  bj-bdfindisg  13830  bj-findisg  13862
  Copyright terms: Public domain W3C validator