![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-rspg | GIF version |
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2722 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bj-rspg.nfa | ⊢ Ⅎ𝑥𝐴 |
bj-rspg.nfb | ⊢ Ⅎ𝑥𝐵 |
bj-rspg.nf2 | ⊢ Ⅎ𝑥𝜓 |
bj-rspg.is | ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
bj-rspg | ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rspg.nfa | . . 3 ⊢ Ⅎ𝑥𝐴 | |
2 | bj-rspg.nfb | . . 3 ⊢ Ⅎ𝑥𝐵 | |
3 | bj-rspg.nf2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
4 | 1, 2, 3 | bj-rspgt 11990 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓))) |
5 | bj-rspg.is | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜓)) | |
6 | 4, 5 | mpg 1386 | 1 ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 Ⅎwnf 1395 ∈ wcel 1439 Ⅎwnfc 2216 ∀wral 2360 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2624 |
This theorem is referenced by: bj-bdfindisg 12147 bj-findisg 12179 |
Copyright terms: Public domain | W3C validator |