Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg GIF version

Theorem bj-rspg 16151
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2904 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa 𝑥𝐴
bj-rspg.nfb 𝑥𝐵
bj-rspg.nf2 𝑥𝜓
bj-rspg.is (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-rspg (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3 𝑥𝐴
2 bj-rspg.nfb . . 3 𝑥𝐵
3 bj-rspg.nf2 . . 3 𝑥𝜓
41, 2, 3bj-rspgt 16150 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))
5 bj-rspg.is . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1497 1 (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wnf 1506  wcel 2200  wnfc 2359  wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801
This theorem is referenced by:  bj-bdfindisg  16311  bj-findisg  16343
  Copyright terms: Public domain W3C validator