Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspg GIF version

Theorem bj-rspg 15279
Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2861 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa 𝑥𝐴
bj-rspg.nfb 𝑥𝐵
bj-rspg.nf2 𝑥𝜓
bj-rspg.is (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
bj-rspg (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))

Proof of Theorem bj-rspg
StepHypRef Expression
1 bj-rspg.nfa . . 3 𝑥𝐴
2 bj-rspg.nfb . . 3 𝑥𝐵
3 bj-rspg.nf2 . . 3 𝑥𝜓
41, 2, 3bj-rspgt 15278 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓)))
5 bj-rspg.is . 2 (𝑥 = 𝐴 → (𝜑𝜓))
64, 5mpg 1462 1 (∀𝑥𝐵 𝜑 → (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wnf 1471  wcel 2164  wnfc 2323  wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762
This theorem is referenced by:  bj-bdfindisg  15440  bj-findisg  15472
  Copyright terms: Public domain W3C validator