Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgft Unicode version

Theorem bj-vtoclgft 11105
Description: Weakening two hypotheses of vtoclgf 2671. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1  |-  F/_ x A
bj-vtoclgf.nf2  |-  F/ x ps
bj-vtoclgf.min  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
bj-vtoclgft  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ps ) )

Proof of Theorem bj-vtoclgft
StepHypRef Expression
1 elex 2624 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 bj-vtoclgf.nf1 . . . 4  |-  F/_ x A
32issetf 2620 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 bj-vtoclgf.nf2 . . . 4  |-  F/ x ps
5 bj-vtoclgf.min . . . 4  |-  ( x  =  A  ->  ph )
64, 5bj-exlimmp 11100 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  A  ->  ps ) )
73, 6syl5bi 150 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  _V  ->  ps ) )
81, 7syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1285    = wceq 1287   F/wnf 1392   E.wex 1424    e. wcel 1436   F/_wnfc 2212   _Vcvv 2615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617
This theorem is referenced by:  bj-vtoclgf  11106  elabgft1  11108  bj-rspgt  11116
  Copyright terms: Public domain W3C validator