Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgft Unicode version

Theorem bj-vtoclgft 13810
Description: Weakening two hypotheses of vtoclgf 2788. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1  |-  F/_ x A
bj-vtoclgf.nf2  |-  F/ x ps
bj-vtoclgf.min  |-  ( x  =  A  ->  ph )
Assertion
Ref Expression
bj-vtoclgft  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ps ) )

Proof of Theorem bj-vtoclgft
StepHypRef Expression
1 elex 2741 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 bj-vtoclgf.nf1 . . . 4  |-  F/_ x A
32issetf 2737 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 bj-vtoclgf.nf2 . . . 4  |-  F/ x ps
5 bj-vtoclgf.min . . . 4  |-  ( x  =  A  ->  ph )
64, 5bj-exlimmp 13804 . . 3  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( E. x  x  =  A  ->  ps ) )
73, 6syl5bi 151 . 2  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  _V  ->  ps ) )
81, 7syl5 32 1  |-  ( A. x ( x  =  A  ->  ( ph  ->  ps ) )  -> 
( A  e.  V  ->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    = wceq 1348   F/wnf 1453   E.wex 1485    e. wcel 2141   F/_wnfc 2299   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  bj-vtoclgf  13811  elabgft1  13813  bj-rspgt  13821
  Copyright terms: Public domain W3C validator