Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclgf | Unicode version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | |
vtoclgf.2 | |
vtoclgf.3 | |
vtoclgf.4 |
Ref | Expression |
---|---|
vtoclgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | vtoclgf.1 | . . . 4 | |
3 | 2 | issetf 2719 | . . 3 |
4 | vtoclgf.2 | . . . 4 | |
5 | vtoclgf.4 | . . . . 5 | |
6 | vtoclgf.3 | . . . . 5 | |
7 | 5, 6 | mpbii 147 | . . . 4 |
8 | 4, 7 | exlimi 1574 | . . 3 |
9 | 3, 8 | sylbi 120 | . 2 |
10 | 1, 9 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 wnf 1440 wex 1472 wcel 2128 wnfc 2286 cvv 2712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 |
This theorem is referenced by: vtoclg 2772 vtocl2gf 2774 vtocl3gf 2775 vtoclgaf 2777 ceqsexg 2840 elabgf 2854 mob 2894 opeliunxp2 4723 fvmptss2 5540 |
Copyright terms: Public domain | W3C validator |