Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtoclgf | Unicode version |
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
vtoclgf.1 | |
vtoclgf.2 | |
vtoclgf.3 | |
vtoclgf.4 |
Ref | Expression |
---|---|
vtoclgf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | vtoclgf.1 | . . . 4 | |
3 | 2 | issetf 2737 | . . 3 |
4 | vtoclgf.2 | . . . 4 | |
5 | vtoclgf.4 | . . . . 5 | |
6 | vtoclgf.3 | . . . . 5 | |
7 | 5, 6 | mpbii 147 | . . . 4 |
8 | 4, 7 | exlimi 1587 | . . 3 |
9 | 3, 8 | sylbi 120 | . 2 |
10 | 1, 9 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wnf 1453 wex 1485 wcel 2141 wnfc 2299 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: vtoclg 2790 vtocl2gf 2792 vtocl3gf 2793 vtoclgaf 2795 ceqsexg 2858 elabgf 2872 mob 2912 opeliunxp2 4751 fvmptss2 5571 |
Copyright terms: Public domain | W3C validator |