| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclgf | Unicode version | ||
| Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclgf.1 |
|
| vtoclgf.2 |
|
| vtoclgf.3 |
|
| vtoclgf.4 |
|
| Ref | Expression |
|---|---|
| vtoclgf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | vtoclgf.1 |
. . . 4
| |
| 3 | 2 | issetf 2807 |
. . 3
|
| 4 | vtoclgf.2 |
. . . 4
| |
| 5 | vtoclgf.4 |
. . . . 5
| |
| 6 | vtoclgf.3 |
. . . . 5
| |
| 7 | 5, 6 | mpbii 148 |
. . . 4
|
| 8 | 4, 7 | exlimi 1640 |
. . 3
|
| 9 | 3, 8 | sylbi 121 |
. 2
|
| 10 | 1, 9 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 |
| This theorem is referenced by: vtoclg 2861 vtocl2gf 2863 vtocl3gf 2864 vtoclgaf 2866 ceqsexg 2931 elabgf 2945 mob 2985 opeliunxp2 4862 fvmptss2 5709 |
| Copyright terms: Public domain | W3C validator |