ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclgf Unicode version

Theorem vtoclgf 2784
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Proof shortened by Mario Carneiro, 10-Oct-2016.)
Hypotheses
Ref Expression
vtoclgf.1  |-  F/_ x A
vtoclgf.2  |-  F/ x ps
vtoclgf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclgf.4  |-  ph
Assertion
Ref Expression
vtoclgf  |-  ( A  e.  V  ->  ps )

Proof of Theorem vtoclgf
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 vtoclgf.1 . . . 4  |-  F/_ x A
32issetf 2733 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
4 vtoclgf.2 . . . 4  |-  F/ x ps
5 vtoclgf.4 . . . . 5  |-  ph
6 vtoclgf.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
75, 6mpbii 147 . . . 4  |-  ( x  =  A  ->  ps )
84, 7exlimi 1582 . . 3  |-  ( E. x  x  =  A  ->  ps )
93, 8sylbi 120 . 2  |-  ( A  e.  _V  ->  ps )
101, 9syl 14 1  |-  ( A  e.  V  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   F/wnf 1448   E.wex 1480    e. wcel 2136   F/_wnfc 2295   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728
This theorem is referenced by:  vtoclg  2786  vtocl2gf  2788  vtocl3gf  2789  vtoclgaf  2791  ceqsexg  2854  elabgf  2868  mob  2908  opeliunxp2  4744  fvmptss2  5561
  Copyright terms: Public domain W3C validator