ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 2767
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1  |-  F/_ x A
Assertion
Ref Expression
issetf  |-  ( A  e.  _V  <->  E. x  x  =  A )

Proof of Theorem issetf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isset 2766 . 2  |-  ( A  e.  _V  <->  E. y 
y  =  A )
2 issetf.1 . . . 4  |-  F/_ x A
32nfeq2 2348 . . 3  |-  F/ x  y  =  A
4 nfv 1539 . . 3  |-  F/ y  x  =  A
5 eqeq1 2200 . . 3  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
63, 4, 5cbvex 1767 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
71, 6bitri 184 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   F/_wnfc 2323   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762
This theorem is referenced by:  vtoclgf  2818  spcimgft  2836  spcimegft  2838  bj-vtoclgft  15272
  Copyright terms: Public domain W3C validator