ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 2779
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1  |-  F/_ x A
Assertion
Ref Expression
issetf  |-  ( A  e.  _V  <->  E. x  x  =  A )

Proof of Theorem issetf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isset 2778 . 2  |-  ( A  e.  _V  <->  E. y 
y  =  A )
2 issetf.1 . . . 4  |-  F/_ x A
32nfeq2 2360 . . 3  |-  F/ x  y  =  A
4 nfv 1551 . . 3  |-  F/ y  x  =  A
5 eqeq1 2212 . . 3  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
63, 4, 5cbvex 1779 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
71, 6bitri 184 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   E.wex 1515    e. wcel 2176   F/_wnfc 2335   _Vcvv 2772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  vtoclgf  2831  spcimgft  2849  spcimegft  2851  bj-vtoclgft  15748
  Copyright terms: Public domain W3C validator