ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 2770
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1  |-  F/_ x A
Assertion
Ref Expression
issetf  |-  ( A  e.  _V  <->  E. x  x  =  A )

Proof of Theorem issetf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isset 2769 . 2  |-  ( A  e.  _V  <->  E. y 
y  =  A )
2 issetf.1 . . . 4  |-  F/_ x A
32nfeq2 2351 . . 3  |-  F/ x  y  =  A
4 nfv 1542 . . 3  |-  F/ y  x  =  A
5 eqeq1 2203 . . 3  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
63, 4, 5cbvex 1770 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
71, 6bitri 184 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   E.wex 1506    e. wcel 2167   F/_wnfc 2326   _Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  vtoclgf  2822  spcimgft  2840  spcimegft  2842  bj-vtoclgft  15388
  Copyright terms: Public domain W3C validator