ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 2742
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1  |-  F/_ x A
Assertion
Ref Expression
issetf  |-  ( A  e.  _V  <->  E. x  x  =  A )

Proof of Theorem issetf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isset 2741 . 2  |-  ( A  e.  _V  <->  E. y 
y  =  A )
2 issetf.1 . . . 4  |-  F/_ x A
32nfeq2 2329 . . 3  |-  F/ x  y  =  A
4 nfv 1526 . . 3  |-  F/ y  x  =  A
5 eqeq1 2182 . . 3  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
63, 4, 5cbvex 1754 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
71, 6bitri 184 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   F/_wnfc 2304   _Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737
This theorem is referenced by:  vtoclgf  2793  spcimgft  2811  spcimegft  2813  bj-vtoclgft  14096
  Copyright terms: Public domain W3C validator