ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  issetf Unicode version

Theorem issetf 2737
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
issetf.1  |-  F/_ x A
Assertion
Ref Expression
issetf  |-  ( A  e.  _V  <->  E. x  x  =  A )

Proof of Theorem issetf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 isset 2736 . 2  |-  ( A  e.  _V  <->  E. y 
y  =  A )
2 issetf.1 . . . 4  |-  F/_ x A
32nfeq2 2324 . . 3  |-  F/ x  y  =  A
4 nfv 1521 . . 3  |-  F/ y  x  =  A
5 eqeq1 2177 . . 3  |-  ( y  =  x  ->  (
y  =  A  <->  x  =  A ) )
63, 4, 5cbvex 1749 . 2  |-  ( E. y  y  =  A  <->  E. x  x  =  A )
71, 6bitri 183 1  |-  ( A  e.  _V  <->  E. x  x  =  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   E.wex 1485    e. wcel 2141   F/_wnfc 2299   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732
This theorem is referenced by:  vtoclgf  2788  spcimgft  2806  spcimegft  2808  bj-vtoclgft  13810
  Copyright terms: Public domain W3C validator