Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > issetf | Unicode version |
Description: A version of isset that does not require x and A to be distinct. (Contributed by Andrew Salmon, 6-Jun-2011.) (Revised by Mario Carneiro, 10-Oct-2016.) |
Ref | Expression |
---|---|
issetf.1 |
Ref | Expression |
---|---|
issetf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isset 2736 | . 2 | |
2 | issetf.1 | . . . 4 | |
3 | 2 | nfeq2 2324 | . . 3 |
4 | nfv 1521 | . . 3 | |
5 | eqeq1 2177 | . . 3 | |
6 | 3, 4, 5 | cbvex 1749 | . 2 |
7 | 1, 6 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1348 wex 1485 wcel 2141 wnfc 2299 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: vtoclgf 2788 spcimgft 2806 spcimegft 2808 bj-vtoclgft 13810 |
Copyright terms: Public domain | W3C validator |