| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vtoclgft | GIF version | ||
| Description: Weakening two hypotheses of vtoclgf 2836. (Contributed by BJ, 21-Nov-2019.) |
| Ref | Expression |
|---|---|
| bj-vtoclgf.nf1 | ⊢ Ⅎ𝑥𝐴 |
| bj-vtoclgf.nf2 | ⊢ Ⅎ𝑥𝜓 |
| bj-vtoclgf.min | ⊢ (𝑥 = 𝐴 → 𝜑) |
| Ref | Expression |
|---|---|
| bj-vtoclgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | bj-vtoclgf.nf1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | issetf 2784 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
| 4 | bj-vtoclgf.nf2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 5 | bj-vtoclgf.min | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜑) | |
| 6 | 4, 5 | bj-exlimmp 15905 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
| 7 | 3, 6 | biimtrid 152 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → 𝜓)) |
| 8 | 1, 7 | syl5 32 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 = wceq 1373 Ⅎwnf 1484 ∃wex 1516 ∈ wcel 2178 Ⅎwnfc 2337 Vcvv 2776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 |
| This theorem is referenced by: bj-vtoclgf 15912 elabgft1 15914 bj-rspgt 15922 |
| Copyright terms: Public domain | W3C validator |