Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgft GIF version

Theorem bj-vtoclgft 15388
Description: Weakening two hypotheses of vtoclgf 2822. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1 𝑥𝐴
bj-vtoclgf.nf2 𝑥𝜓
bj-vtoclgf.min (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
bj-vtoclgft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))

Proof of Theorem bj-vtoclgft
StepHypRef Expression
1 elex 2774 . 2 (𝐴𝑉𝐴 ∈ V)
2 bj-vtoclgf.nf1 . . . 4 𝑥𝐴
32issetf 2770 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 bj-vtoclgf.nf2 . . . 4 𝑥𝜓
5 bj-vtoclgf.min . . . 4 (𝑥 = 𝐴𝜑)
64, 5bj-exlimmp 15382 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝐴𝜓))
73, 6biimtrid 152 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → 𝜓))
81, 7syl5 32 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362   = wceq 1364  wnf 1474  wex 1506  wcel 2167  wnfc 2326  Vcvv 2763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  bj-vtoclgf  15389  elabgft1  15391  bj-rspgt  15399
  Copyright terms: Public domain W3C validator