![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-vtoclgft | GIF version |
Description: Weakening two hypotheses of vtoclgf 2822. (Contributed by BJ, 21-Nov-2019.) |
Ref | Expression |
---|---|
bj-vtoclgf.nf1 | ⊢ Ⅎ𝑥𝐴 |
bj-vtoclgf.nf2 | ⊢ Ⅎ𝑥𝜓 |
bj-vtoclgf.min | ⊢ (𝑥 = 𝐴 → 𝜑) |
Ref | Expression |
---|---|
bj-vtoclgft | ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | bj-vtoclgf.nf1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | issetf 2770 | . . 3 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) |
4 | bj-vtoclgf.nf2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | bj-vtoclgf.min | . . . 4 ⊢ (𝑥 = 𝐴 → 𝜑) | |
6 | 4, 5 | bj-exlimmp 15382 | . . 3 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (∃𝑥 𝑥 = 𝐴 → 𝜓)) |
7 | 3, 6 | biimtrid 152 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ V → 𝜓)) |
8 | 1, 7 | syl5 32 | 1 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 → 𝜓)) → (𝐴 ∈ 𝑉 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 = wceq 1364 Ⅎwnf 1474 ∃wex 1506 ∈ wcel 2167 Ⅎwnfc 2326 Vcvv 2763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 |
This theorem is referenced by: bj-vtoclgf 15389 elabgft1 15391 bj-rspgt 15399 |
Copyright terms: Public domain | W3C validator |