Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-vtoclgft GIF version

Theorem bj-vtoclgft 16139
Description: Weakening two hypotheses of vtoclgf 2859. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-vtoclgf.nf1 𝑥𝐴
bj-vtoclgf.nf2 𝑥𝜓
bj-vtoclgf.min (𝑥 = 𝐴𝜑)
Assertion
Ref Expression
bj-vtoclgft (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))

Proof of Theorem bj-vtoclgft
StepHypRef Expression
1 elex 2811 . 2 (𝐴𝑉𝐴 ∈ V)
2 bj-vtoclgf.nf1 . . . 4 𝑥𝐴
32issetf 2807 . . 3 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
4 bj-vtoclgf.nf2 . . . 4 𝑥𝜓
5 bj-vtoclgf.min . . . 4 (𝑥 = 𝐴𝜑)
64, 5bj-exlimmp 16133 . . 3 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (∃𝑥 𝑥 = 𝐴𝜓))
73, 6biimtrid 152 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴 ∈ V → 𝜓))
81, 7syl5 32 1 (∀𝑥(𝑥 = 𝐴 → (𝜑𝜓)) → (𝐴𝑉𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393   = wceq 1395  wnf 1506  wex 1538  wcel 2200  wnfc 2359  Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  bj-vtoclgf  16140  elabgft1  16142  bj-rspgt  16150
  Copyright terms: Public domain W3C validator