ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalvw Unicode version

Theorem cbvalvw 1907
Description: Change bound variable. See cbvalv 1905 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1436. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvalvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvalvw  |-  ( A. x ph  <->  A. y ps )
Distinct variable groups:    x, y    ps, x    ph, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvalvw
StepHypRef Expression
1 cbvalvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
21spv 1848 . . 3  |-  ( A. x ph  ->  ps )
32alrimiv 1862 . 2  |-  ( A. x ph  ->  A. y ps )
41equcoms 1696 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  ps ) )
54biimprd 157 . . . 4  |-  ( y  =  x  ->  ( ps  ->  ph ) )
65spimv 1799 . . 3  |-  ( A. y ps  ->  ph )
76alrimiv 1862 . 2  |-  ( A. y ps  ->  A. x ph )
83, 7impbii 125 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbvralvw  2696  cbvreuvw  2698
  Copyright terms: Public domain W3C validator