ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralvw Unicode version

Theorem cbvralvw 2769
Description: Version of cbvralv 2765 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralvw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvralvw
StepHypRef Expression
1 eleq1w 2290 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
43cbvalvw 1966 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
5 df-ral 2513 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
6 df-ral 2513 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
74, 5, 63bitr4i 212 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393    e. wcel 2200   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-clel 2225  df-ral 2513
This theorem is referenced by:  cbvral2vw  2776  cc1  7451  zsupssdc  10458  wrdind  11254  wrd2ind  11255  reuccatpfxs1  11279  prmpwdvds  12878  nninfdclemcl  13019  grpinvalem  13418  grpinva  13419  issubg4m  13730  isnsg2  13740  elnmz  13745  fsumdvdsmul  15665  2sqlem6  15799  2sqlem10  15804  uspgr2wlkeq  16076  bj-charfunbi  16174
  Copyright terms: Public domain W3C validator