ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralvw Unicode version

Theorem cbvralvw 2709
Description: Version of cbvralv 2705 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralvw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvralvw
StepHypRef Expression
1 eleq1w 2238 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
43cbvalvw 1919 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
5 df-ral 2460 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
6 df-ral 2460 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
74, 5, 63bitr4i 212 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351    e. wcel 2148   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-clel 2173  df-ral 2460
This theorem is referenced by:  cbvral2vw  2716  cc1  7266  zsupssdc  11957  prmpwdvds  12355  grprinvlem  12809  grprinvd  12810  issubg4m  13058  isnsg2  13068  elnmz  13073  2sqlem6  14506  2sqlem10  14511  bj-charfunbi  14602
  Copyright terms: Public domain W3C validator