ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralvw Unicode version

Theorem cbvralvw 2746
Description: Version of cbvralv 2742 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralvw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvralvw
StepHypRef Expression
1 eleq1w 2268 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
43cbvalvw 1944 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
5 df-ral 2491 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
6 df-ral 2491 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
74, 5, 63bitr4i 212 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371    e. wcel 2178   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-clel 2203  df-ral 2491
This theorem is referenced by:  cbvral2vw  2753  cc1  7412  zsupssdc  10418  wrdind  11213  wrd2ind  11214  reuccatpfxs1  11238  prmpwdvds  12793  nninfdclemcl  12934  grpinvalem  13332  grpinva  13333  issubg4m  13644  isnsg2  13654  elnmz  13659  fsumdvdsmul  15578  2sqlem6  15712  2sqlem10  15717  bj-charfunbi  15946
  Copyright terms: Public domain W3C validator