| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvralvw | Unicode version | ||
| Description: Version of cbvralv 2729 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| cbvralvw.1 |
|
| Ref | Expression |
|---|---|
| cbvralvw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2257 |
. . . 4
| |
| 2 | cbvralvw.1 |
. . . 4
| |
| 3 | 1, 2 | imbi12d 234 |
. . 3
|
| 4 | 3 | cbvalvw 1934 |
. 2
|
| 5 | df-ral 2480 |
. 2
| |
| 6 | df-ral 2480 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-clel 2192 df-ral 2480 |
| This theorem is referenced by: cbvral2vw 2740 cc1 7332 zsupssdc 10328 prmpwdvds 12524 nninfdclemcl 12665 grpinvalem 13028 grpinva 13029 issubg4m 13323 isnsg2 13333 elnmz 13338 fsumdvdsmul 15227 2sqlem6 15361 2sqlem10 15366 bj-charfunbi 15457 |
| Copyright terms: Public domain | W3C validator |