ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalvw GIF version

Theorem cbvalvw 1912
Description: Change bound variable. See cbvalv 1910 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1441. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvalvw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvalvw (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Distinct variable groups:   𝑥,𝑦   𝜓,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvalvw
StepHypRef Expression
1 cbvalvw.1 . . . 4 (𝑥 = 𝑦 → (𝜑𝜓))
21spv 1853 . . 3 (∀𝑥𝜑𝜓)
32alrimiv 1867 . 2 (∀𝑥𝜑 → ∀𝑦𝜓)
41equcoms 1701 . . . . 5 (𝑦 = 𝑥 → (𝜑𝜓))
54biimprd 157 . . . 4 (𝑦 = 𝑥 → (𝜓𝜑))
65spimv 1804 . . 3 (∀𝑦𝜓𝜑)
76alrimiv 1867 . 2 (∀𝑦𝜓 → ∀𝑥𝜑)
83, 7impbii 125 1 (∀𝑥𝜑 ↔ ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by:  cbvralvw  2700  cbvreuvw  2702
  Copyright terms: Public domain W3C validator