Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvalvw | GIF version |
Description: Change bound variable. See cbvalv 1905 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1436. (Revised by Gino Giotto, 25-Aug-2024.) |
Ref | Expression |
---|---|
cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
2 | 1 | spv 1848 | . . 3 ⊢ (∀𝑥𝜑 → 𝜓) |
3 | 2 | alrimiv 1862 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
4 | 1 | equcoms 1696 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
5 | 4 | biimprd 157 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
6 | 5 | spimv 1799 | . . 3 ⊢ (∀𝑦𝜓 → 𝜑) |
7 | 6 | alrimiv 1862 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
8 | 3, 7 | impbii 125 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: cbvralvw 2696 cbvreuvw 2698 |
Copyright terms: Public domain | W3C validator |