| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvalvw | GIF version | ||
| Description: Change bound variable. See cbvalv 1932 for a version with fewer disjoint variable conditions. (Contributed by NM, 9-Apr-2017.) Avoid ax-7 1462. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| cbvalvw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvalvw | ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvalvw.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | spv 1874 | . . 3 ⊢ (∀𝑥𝜑 → 𝜓) |
| 3 | 2 | alrimiv 1888 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
| 4 | 1 | equcoms 1722 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) |
| 5 | 4 | biimprd 158 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝜓 → 𝜑)) |
| 6 | 5 | spimv 1825 | . . 3 ⊢ (∀𝑦𝜓 → 𝜑) |
| 7 | 6 | alrimiv 1888 | . 2 ⊢ (∀𝑦𝜓 → ∀𝑥𝜑) |
| 8 | 3, 7 | impbii 126 | 1 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: cbvaldvaw 1945 cbval2vw 1947 cbvralvw 2733 cbvreuvw 2735 |
| Copyright terms: Public domain | W3C validator |