ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexd GIF version

Theorem cbvexd 1877
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 1968. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
Hypotheses
Ref Expression
cbvexd.1 𝑦𝜑
cbvexd.2 (𝜑 → Ⅎ𝑦𝜓)
cbvexd.3 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
Assertion
Ref Expression
cbvexd (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Distinct variable groups:   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑦)

Proof of Theorem cbvexd
StepHypRef Expression
1 cbvexd.1 . . 3 𝑦𝜑
21nfri 1482 . 2 (𝜑 → ∀𝑦𝜑)
3 cbvexd.2 . . 3 (𝜑 → Ⅎ𝑦𝜓)
43nfrd 1483 . 2 (𝜑 → (𝜓 → ∀𝑦𝜓))
5 cbvexd.3 . 2 (𝜑 → (𝑥 = 𝑦 → (𝜓𝜒)))
62, 4, 5cbvexdh 1876 1 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑦𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wnf 1419  wex 1451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497
This theorem depends on definitions:  df-bi 116  df-nf 1420
This theorem is referenced by:  cbvexdva  1879  vtoclgft  2707  bdsepnft  12777  strcollnft  12874
  Copyright terms: Public domain W3C validator