ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralw Unicode version

Theorem cbvralw 2687
Description: Rule used to change bound variables, using implicit substitution. Version of cbvral 2688 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1495 and ax-bndl 1497 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1  |-  F/ y
ph
cbvralw.2  |-  F/ x ps
cbvralw.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvralw
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfcv 2308 . 2  |-  F/_ y A
3 cbvralw.1 . 2  |-  F/ y
ph
4 cbvralw.2 . 2  |-  F/ x ps
5 cbvralw.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvralfw 2683 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449
This theorem is referenced by:  pcmptdvds  12275
  Copyright terms: Public domain W3C validator