ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralw Unicode version

Theorem cbvralw 2723
Description: Rule used to change bound variables, using implicit substitution. Version of cbvral 2725 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1521 and ax-bndl 1523 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by GG, 10-Jan-2024.)
Hypotheses
Ref Expression
cbvralw.1  |-  F/ y
ph
cbvralw.2  |-  F/ x ps
cbvralw.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvralw
StepHypRef Expression
1 nfcv 2339 . 2  |-  F/_ x A
2 nfcv 2339 . 2  |-  F/_ y A
3 cbvralw.1 . 2  |-  F/ y
ph
4 cbvralw.2 . 2  |-  F/ x ps
5 cbvralw.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvralfw 2719 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1474   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480
This theorem is referenced by:  pcmptdvds  12514  lgseisenlem2  15312
  Copyright terms: Public domain W3C validator