ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral Unicode version

Theorem cbvral 2761
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
cbvral.1  |-  F/ y
ph
cbvral.2  |-  F/ x ps
cbvral.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvral  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvral
StepHypRef Expression
1 nfcv 2372 . 2  |-  F/_ x A
2 nfcv 2372 . 2  |-  F/_ y A
3 cbvral.1 . 2  |-  F/ y
ph
4 cbvral.2 . 2  |-  F/ x ps
5 cbvral.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvralf 2756 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1506   A.wral 2508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513
This theorem is referenced by:  cbvralv  2765  cbvralsv  2781  cbviin  4002  frind  4442  ralxpf  4867  eqfnfv2f  5735  ralrnmpt  5776  dff13f  5893  ofrfval2  6233  uchoice  6281  fmpox  6344  cbvixp  6860  mptelixpg  6879  xpf1o  7001  indstr  9784  fsum3  11893  fsum00  11968  mertenslem2  12042  fprodcl2lem  12111  fprodle  12146  ctiunctal  13007  cnmpt11  14951  cnmpt21  14959  bj-bdfindes  16270  bj-findes  16302
  Copyright terms: Public domain W3C validator