ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral Unicode version

Theorem cbvral 2714
Description: Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
Hypotheses
Ref Expression
cbvral.1  |-  F/ y
ph
cbvral.2  |-  F/ x ps
cbvral.3  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvral  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable groups:    x, A    y, A
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvral
StepHypRef Expression
1 nfcv 2332 . 2  |-  F/_ x A
2 nfcv 2332 . 2  |-  F/_ y A
3 cbvral.1 . 2  |-  F/ y
ph
4 cbvral.2 . 2  |-  F/ x ps
5 cbvral.3 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
61, 2, 3, 4, 5cbvralf 2710 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1471   A.wral 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473
This theorem is referenced by:  cbvralv  2718  cbvralsv  2734  cbviin  3939  frind  4370  ralxpf  4791  eqfnfv2f  5638  ralrnmpt  5679  dff13f  5792  ofrfval2  6124  fmpox  6226  cbvixp  6742  mptelixpg  6761  xpf1o  6873  indstr  9625  fsum3  11430  fsum00  11505  mertenslem2  11579  fprodcl2lem  11648  fprodle  11683  ctiunctal  12495  cnmpt11  14260  cnmpt21  14268  bj-bdfindes  15179  bj-findes  15211
  Copyright terms: Public domain W3C validator