ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds Unicode version

Theorem pcmptdvds 12290
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmptdvds.3  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmptdvds  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )

Proof of Theorem pcmptdvds
Dummy variables  m  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
2 nfv 1521 . . . . . . . . . 10  |-  F/ m  A  e.  NN0
3 nfcsb1v 3082 . . . . . . . . . . 11  |-  F/_ n [_ m  /  n ]_ A
43nfel1 2323 . . . . . . . . . 10  |-  F/ n [_ m  /  n ]_ A  e.  NN0
5 csbeq1a 3058 . . . . . . . . . . 11  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
65eleq1d 2239 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A  e.  NN0  <->  [_ m  /  n ]_ A  e.  NN0 ) )
72, 4, 6cbvralw 2691 . . . . . . . . 9  |-  ( A. n  e.  Prime  A  e. 
NN0 
<-> 
A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
81, 7sylib 121 . . . . . . . 8  |-  ( ph  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
9 csbeq1 3052 . . . . . . . . . 10  |-  ( m  =  p  ->  [_ m  /  n ]_ A  = 
[_ p  /  n ]_ A )
109eleq1d 2239 . . . . . . . . 9  |-  ( m  =  p  ->  ( [_ m  /  n ]_ A  e.  NN0  <->  [_ p  /  n ]_ A  e.  NN0 ) )
1110rspcv 2830 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( A. m  e.  Prime  [_ m  /  n ]_ A  e. 
NN0  ->  [_ p  /  n ]_ A  e.  NN0 ) )
128, 11mpan9 279 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  [_ p  /  n ]_ A  e.  NN0 )
1312nn0ge0d 9184 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  [_ p  /  n ]_ A )
14 0le0 8960 . . . . . . 7  |-  0  <_  0
1514a1i 9 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  0 )
16 prmz 12058 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
17 pcmptdvds.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
18 eluzelz 9489 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2019adantr 274 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
21 zdcle 9281 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
2216, 20, 21syl2an2 589 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  M )
23 pcmpt.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2423adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
2524nnzd 9326 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
26 zdcle 9281 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2716, 25, 26syl2an2 589 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  N )
28 dcn 837 . . . . . . . 8  |-  (DECID  p  <_  N  -> DECID  -.  p  <_  N )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  -.  p  <_  N
)
30 dcan2 929 . . . . . . 7  |-  (DECID  p  <_  M  ->  (DECID  -.  p  <_  N  -> DECID  ( p  <_  M  /\  -.  p  <_  N ) ) )
3122, 29, 30sylc 62 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  ( p  <_  M  /\  -.  p  <_  N
) )
32 breq2 3991 . . . . . . 7  |-  ( [_ p  /  n ]_ A  =  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  [_ p  /  n ]_ A  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
33 breq2 3991 . . . . . . 7  |-  ( 0  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
3432, 33ifbothdc 3557 . . . . . 6  |-  ( ( 0  <_  [_ p  /  n ]_ A  /\  0  <_  0  /\ DECID  ( p  <_  M  /\  -.  p  <_  N
) )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 ) )
3513, 15, 31, 34syl3anc 1233 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
36 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
37 nfcv 2312 . . . . . . . 8  |-  F/_ m if ( n  e.  Prime ,  ( n ^ A
) ,  1 )
38 nfv 1521 . . . . . . . . 9  |-  F/ n  m  e.  Prime
39 nfcv 2312 . . . . . . . . . 10  |-  F/_ n m
40 nfcv 2312 . . . . . . . . . 10  |-  F/_ n ^
4139, 40, 3nfov 5881 . . . . . . . . 9  |-  F/_ n
( m ^ [_ m  /  n ]_ A
)
42 nfcv 2312 . . . . . . . . 9  |-  F/_ n
1
4338, 41, 42nfif 3553 . . . . . . . 8  |-  F/_ n if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 )
44 eleq1w 2231 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  e.  Prime  <->  m  e.  Prime ) )
45 id 19 . . . . . . . . . 10  |-  ( n  =  m  ->  n  =  m )
4645, 5oveq12d 5869 . . . . . . . . 9  |-  ( n  =  m  ->  (
n ^ A )  =  ( m ^ [_ m  /  n ]_ A ) )
4744, 46ifbieq1d 3547 . . . . . . . 8  |-  ( n  =  m  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4837, 43, 47cbvmpt 4082 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4936, 48eqtri 2191 . . . . . 6  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 ) )
508adantr 274 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
51 simpr 109 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
5217adantr 274 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ( ZZ>= `  N )
)
5349, 50, 24, 51, 9, 52pcmpt2 12289 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  pCnt  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
) )  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
5435, 53breqtrrd 4015 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
5554ralrimiva 2543 . . 3  |-  ( ph  ->  A. p  e.  Prime  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) ) )
5636, 1pcmptcl 12287 . . . . . . . 8  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
5756simprd 113 . . . . . . 7  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
58 eluznn 9552 . . . . . . . 8  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
5923, 17, 58syl2anc 409 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6057, 59ffvelrnd 5630 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
6160nnzd 9326 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
6257, 23ffvelrnd 5630 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
63 znq 9576 . . . . 5  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  QQ )
6461, 62, 63syl2anc 409 . . . 4  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  QQ )
65 pcz 12278 . . . 4  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  QQ  ->  ( (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6664, 65syl 14 . . 3  |-  ( ph  ->  ( ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6755, 66mpbird 166 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  ZZ )
6862nnzd 9326 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
6962nnne0d 8916 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  =/=  0 )
70 dvdsval2 11745 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  =/=  0  /\  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x.  ,  F ) `  M
)  <->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ ) )
7168, 69, 61, 70syl3anc 1233 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  N )  ||  (  seq 1
(  x.  ,  F
) `  M )  <->  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  ZZ ) )
7267, 71mpbird 166 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141    =/= wne 2340   A.wral 2448   [_csb 3049   ifcif 3525   class class class wbr 3987    |-> cmpt 4048   -->wf 5192   ` cfv 5196  (class class class)co 5851   0cc0 7767   1c1 7768    x. cmul 7772    <_ cle 7948    / cdiv 8582   NNcn 8871   NN0cn0 9128   ZZcz 9205   ZZ>=cuz 9480   QQcq 9571    seqcseq 10394   ^cexp 10468    || cdvds 11742   Primecprime 12054    pCnt cpc 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-fin 6719  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-xnn0 9192  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-gcd 11891  df-prm 12055  df-pc 12232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator