ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds Unicode version

Theorem pcmptdvds 12345
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmptdvds.3  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmptdvds  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )

Proof of Theorem pcmptdvds
Dummy variables  m  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
2 nfv 1528 . . . . . . . . . 10  |-  F/ m  A  e.  NN0
3 nfcsb1v 3092 . . . . . . . . . . 11  |-  F/_ n [_ m  /  n ]_ A
43nfel1 2330 . . . . . . . . . 10  |-  F/ n [_ m  /  n ]_ A  e.  NN0
5 csbeq1a 3068 . . . . . . . . . . 11  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
65eleq1d 2246 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A  e.  NN0  <->  [_ m  /  n ]_ A  e.  NN0 ) )
72, 4, 6cbvralw 2699 . . . . . . . . 9  |-  ( A. n  e.  Prime  A  e. 
NN0 
<-> 
A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
81, 7sylib 122 . . . . . . . 8  |-  ( ph  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
9 csbeq1 3062 . . . . . . . . . 10  |-  ( m  =  p  ->  [_ m  /  n ]_ A  = 
[_ p  /  n ]_ A )
109eleq1d 2246 . . . . . . . . 9  |-  ( m  =  p  ->  ( [_ m  /  n ]_ A  e.  NN0  <->  [_ p  /  n ]_ A  e.  NN0 ) )
1110rspcv 2839 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( A. m  e.  Prime  [_ m  /  n ]_ A  e. 
NN0  ->  [_ p  /  n ]_ A  e.  NN0 ) )
128, 11mpan9 281 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  [_ p  /  n ]_ A  e.  NN0 )
1312nn0ge0d 9234 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  [_ p  /  n ]_ A )
14 0le0 9010 . . . . . . 7  |-  0  <_  0
1514a1i 9 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  0 )
16 prmz 12113 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
17 pcmptdvds.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
18 eluzelz 9539 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
21 zdcle 9331 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
2216, 20, 21syl2an2 594 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  M )
23 pcmpt.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
2524nnzd 9376 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
26 zdcle 9331 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2716, 25, 26syl2an2 594 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  N )
28 dcn 842 . . . . . . . 8  |-  (DECID  p  <_  N  -> DECID  -.  p  <_  N )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  -.  p  <_  N
)
30 dcan2 934 . . . . . . 7  |-  (DECID  p  <_  M  ->  (DECID  -.  p  <_  N  -> DECID  ( p  <_  M  /\  -.  p  <_  N ) ) )
3122, 29, 30sylc 62 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  ( p  <_  M  /\  -.  p  <_  N
) )
32 breq2 4009 . . . . . . 7  |-  ( [_ p  /  n ]_ A  =  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  [_ p  /  n ]_ A  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
33 breq2 4009 . . . . . . 7  |-  ( 0  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
3432, 33ifbothdc 3569 . . . . . 6  |-  ( ( 0  <_  [_ p  /  n ]_ A  /\  0  <_  0  /\ DECID  ( p  <_  M  /\  -.  p  <_  N
) )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 ) )
3513, 15, 31, 34syl3anc 1238 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
36 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
37 nfcv 2319 . . . . . . . 8  |-  F/_ m if ( n  e.  Prime ,  ( n ^ A
) ,  1 )
38 nfv 1528 . . . . . . . . 9  |-  F/ n  m  e.  Prime
39 nfcv 2319 . . . . . . . . . 10  |-  F/_ n m
40 nfcv 2319 . . . . . . . . . 10  |-  F/_ n ^
4139, 40, 3nfov 5907 . . . . . . . . 9  |-  F/_ n
( m ^ [_ m  /  n ]_ A
)
42 nfcv 2319 . . . . . . . . 9  |-  F/_ n
1
4338, 41, 42nfif 3564 . . . . . . . 8  |-  F/_ n if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 )
44 eleq1w 2238 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  e.  Prime  <->  m  e.  Prime ) )
45 id 19 . . . . . . . . . 10  |-  ( n  =  m  ->  n  =  m )
4645, 5oveq12d 5895 . . . . . . . . 9  |-  ( n  =  m  ->  (
n ^ A )  =  ( m ^ [_ m  /  n ]_ A ) )
4744, 46ifbieq1d 3558 . . . . . . . 8  |-  ( n  =  m  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4837, 43, 47cbvmpt 4100 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4936, 48eqtri 2198 . . . . . 6  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 ) )
508adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
51 simpr 110 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
5217adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ( ZZ>= `  N )
)
5349, 50, 24, 51, 9, 52pcmpt2 12344 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  pCnt  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
) )  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
5435, 53breqtrrd 4033 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
5554ralrimiva 2550 . . 3  |-  ( ph  ->  A. p  e.  Prime  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) ) )
5636, 1pcmptcl 12342 . . . . . . . 8  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
5756simprd 114 . . . . . . 7  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
58 eluznn 9602 . . . . . . . 8  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
5923, 17, 58syl2anc 411 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6057, 59ffvelcdmd 5654 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
6160nnzd 9376 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
6257, 23ffvelcdmd 5654 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
63 znq 9626 . . . . 5  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  QQ )
6461, 62, 63syl2anc 411 . . . 4  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  QQ )
65 pcz 12333 . . . 4  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  QQ  ->  ( (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6664, 65syl 14 . . 3  |-  ( ph  ->  ( ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6755, 66mpbird 167 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  ZZ )
6862nnzd 9376 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
6962nnne0d 8966 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  =/=  0 )
70 dvdsval2 11799 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  =/=  0  /\  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x.  ,  F ) `  M
)  <->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ ) )
7168, 69, 61, 70syl3anc 1238 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  N )  ||  (  seq 1
(  x.  ,  F
) `  M )  <->  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  ZZ ) )
7267, 71mpbird 167 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   [_csb 3059   ifcif 3536   class class class wbr 4005    |-> cmpt 4066   -->wf 5214   ` cfv 5218  (class class class)co 5877   0cc0 7813   1c1 7814    x. cmul 7818    <_ cle 7995    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255   ZZ>=cuz 9530   QQcq 9621    seqcseq 10447   ^cexp 10521    || cdvds 11796   Primecprime 12109    pCnt cpc 12286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-fin 6745  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-xnn0 9242  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator