ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds Unicode version

Theorem pcmptdvds 12275
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmptdvds.3  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmptdvds  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )

Proof of Theorem pcmptdvds
Dummy variables  m  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
2 nfv 1516 . . . . . . . . . 10  |-  F/ m  A  e.  NN0
3 nfcsb1v 3078 . . . . . . . . . . 11  |-  F/_ n [_ m  /  n ]_ A
43nfel1 2319 . . . . . . . . . 10  |-  F/ n [_ m  /  n ]_ A  e.  NN0
5 csbeq1a 3054 . . . . . . . . . . 11  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
65eleq1d 2235 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A  e.  NN0  <->  [_ m  /  n ]_ A  e.  NN0 ) )
72, 4, 6cbvralw 2687 . . . . . . . . 9  |-  ( A. n  e.  Prime  A  e. 
NN0 
<-> 
A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
81, 7sylib 121 . . . . . . . 8  |-  ( ph  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
9 csbeq1 3048 . . . . . . . . . 10  |-  ( m  =  p  ->  [_ m  /  n ]_ A  = 
[_ p  /  n ]_ A )
109eleq1d 2235 . . . . . . . . 9  |-  ( m  =  p  ->  ( [_ m  /  n ]_ A  e.  NN0  <->  [_ p  /  n ]_ A  e.  NN0 ) )
1110rspcv 2826 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( A. m  e.  Prime  [_ m  /  n ]_ A  e. 
NN0  ->  [_ p  /  n ]_ A  e.  NN0 ) )
128, 11mpan9 279 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  [_ p  /  n ]_ A  e.  NN0 )
1312nn0ge0d 9170 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  [_ p  /  n ]_ A )
14 0le0 8946 . . . . . . 7  |-  0  <_  0
1514a1i 9 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  0 )
16 prmz 12043 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
17 pcmptdvds.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
18 eluzelz 9475 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2019adantr 274 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
21 zdcle 9267 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
2216, 20, 21syl2an2 584 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  M )
23 pcmpt.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2423adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
2524nnzd 9312 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
26 zdcle 9267 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2716, 25, 26syl2an2 584 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  N )
28 dcn 832 . . . . . . . 8  |-  (DECID  p  <_  N  -> DECID  -.  p  <_  N )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  -.  p  <_  N
)
30 dcan2 924 . . . . . . 7  |-  (DECID  p  <_  M  ->  (DECID  -.  p  <_  N  -> DECID  ( p  <_  M  /\  -.  p  <_  N ) ) )
3122, 29, 30sylc 62 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  ( p  <_  M  /\  -.  p  <_  N
) )
32 breq2 3986 . . . . . . 7  |-  ( [_ p  /  n ]_ A  =  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  [_ p  /  n ]_ A  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
33 breq2 3986 . . . . . . 7  |-  ( 0  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
3432, 33ifbothdc 3552 . . . . . 6  |-  ( ( 0  <_  [_ p  /  n ]_ A  /\  0  <_  0  /\ DECID  ( p  <_  M  /\  -.  p  <_  N
) )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 ) )
3513, 15, 31, 34syl3anc 1228 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
36 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
37 nfcv 2308 . . . . . . . 8  |-  F/_ m if ( n  e.  Prime ,  ( n ^ A
) ,  1 )
38 nfv 1516 . . . . . . . . 9  |-  F/ n  m  e.  Prime
39 nfcv 2308 . . . . . . . . . 10  |-  F/_ n m
40 nfcv 2308 . . . . . . . . . 10  |-  F/_ n ^
4139, 40, 3nfov 5872 . . . . . . . . 9  |-  F/_ n
( m ^ [_ m  /  n ]_ A
)
42 nfcv 2308 . . . . . . . . 9  |-  F/_ n
1
4338, 41, 42nfif 3548 . . . . . . . 8  |-  F/_ n if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 )
44 eleq1w 2227 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  e.  Prime  <->  m  e.  Prime ) )
45 id 19 . . . . . . . . . 10  |-  ( n  =  m  ->  n  =  m )
4645, 5oveq12d 5860 . . . . . . . . 9  |-  ( n  =  m  ->  (
n ^ A )  =  ( m ^ [_ m  /  n ]_ A ) )
4744, 46ifbieq1d 3542 . . . . . . . 8  |-  ( n  =  m  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4837, 43, 47cbvmpt 4077 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4936, 48eqtri 2186 . . . . . 6  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 ) )
508adantr 274 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
51 simpr 109 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
5217adantr 274 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ( ZZ>= `  N )
)
5349, 50, 24, 51, 9, 52pcmpt2 12274 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  pCnt  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
) )  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
5435, 53breqtrrd 4010 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
5554ralrimiva 2539 . . 3  |-  ( ph  ->  A. p  e.  Prime  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) ) )
5636, 1pcmptcl 12272 . . . . . . . 8  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
5756simprd 113 . . . . . . 7  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
58 eluznn 9538 . . . . . . . 8  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
5923, 17, 58syl2anc 409 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6057, 59ffvelrnd 5621 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
6160nnzd 9312 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
6257, 23ffvelrnd 5621 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
63 znq 9562 . . . . 5  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  QQ )
6461, 62, 63syl2anc 409 . . . 4  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  QQ )
65 pcz 12263 . . . 4  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  QQ  ->  ( (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6664, 65syl 14 . . 3  |-  ( ph  ->  ( ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6755, 66mpbird 166 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  ZZ )
6862nnzd 9312 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
6962nnne0d 8902 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  =/=  0 )
70 dvdsval2 11730 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  =/=  0  /\  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x.  ,  F ) `  M
)  <->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ ) )
7168, 69, 61, 70syl3anc 1228 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  N )  ||  (  seq 1
(  x.  ,  F
) `  M )  <->  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  ZZ ) )
7267, 71mpbird 166 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343    e. wcel 2136    =/= wne 2336   A.wral 2444   [_csb 3045   ifcif 3520   class class class wbr 3982    |-> cmpt 4043   -->wf 5184   ` cfv 5188  (class class class)co 5842   0cc0 7753   1c1 7754    x. cmul 7758    <_ cle 7934    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   QQcq 9557    seqcseq 10380   ^cexp 10454    || cdvds 11727   Primecprime 12039    pCnt cpc 12216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-fin 6709  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-xnn0 9178  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040  df-pc 12217
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator