ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds Unicode version

Theorem pcmptdvds 12483
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmptdvds.3  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmptdvds  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )

Proof of Theorem pcmptdvds
Dummy variables  m  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
2 nfv 1539 . . . . . . . . . 10  |-  F/ m  A  e.  NN0
3 nfcsb1v 3113 . . . . . . . . . . 11  |-  F/_ n [_ m  /  n ]_ A
43nfel1 2347 . . . . . . . . . 10  |-  F/ n [_ m  /  n ]_ A  e.  NN0
5 csbeq1a 3089 . . . . . . . . . . 11  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
65eleq1d 2262 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A  e.  NN0  <->  [_ m  /  n ]_ A  e.  NN0 ) )
72, 4, 6cbvralw 2720 . . . . . . . . 9  |-  ( A. n  e.  Prime  A  e. 
NN0 
<-> 
A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
81, 7sylib 122 . . . . . . . 8  |-  ( ph  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
9 csbeq1 3083 . . . . . . . . . 10  |-  ( m  =  p  ->  [_ m  /  n ]_ A  = 
[_ p  /  n ]_ A )
109eleq1d 2262 . . . . . . . . 9  |-  ( m  =  p  ->  ( [_ m  /  n ]_ A  e.  NN0  <->  [_ p  /  n ]_ A  e.  NN0 ) )
1110rspcv 2860 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( A. m  e.  Prime  [_ m  /  n ]_ A  e. 
NN0  ->  [_ p  /  n ]_ A  e.  NN0 ) )
128, 11mpan9 281 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  [_ p  /  n ]_ A  e.  NN0 )
1312nn0ge0d 9296 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  [_ p  /  n ]_ A )
14 0le0 9071 . . . . . . 7  |-  0  <_  0
1514a1i 9 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  0 )
16 prmz 12249 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
17 pcmptdvds.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
18 eluzelz 9601 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
21 zdcle 9393 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
2216, 20, 21syl2an2 594 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  M )
23 pcmpt.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
2524nnzd 9438 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
26 zdcle 9393 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2716, 25, 26syl2an2 594 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  N )
28 dcn 843 . . . . . . . 8  |-  (DECID  p  <_  N  -> DECID  -.  p  <_  N )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  -.  p  <_  N
)
30 dcan2 936 . . . . . . 7  |-  (DECID  p  <_  M  ->  (DECID  -.  p  <_  N  -> DECID  ( p  <_  M  /\  -.  p  <_  N ) ) )
3122, 29, 30sylc 62 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  ( p  <_  M  /\  -.  p  <_  N
) )
32 breq2 4033 . . . . . . 7  |-  ( [_ p  /  n ]_ A  =  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  [_ p  /  n ]_ A  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
33 breq2 4033 . . . . . . 7  |-  ( 0  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
3432, 33ifbothdc 3590 . . . . . 6  |-  ( ( 0  <_  [_ p  /  n ]_ A  /\  0  <_  0  /\ DECID  ( p  <_  M  /\  -.  p  <_  N
) )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 ) )
3513, 15, 31, 34syl3anc 1249 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
36 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
37 nfcv 2336 . . . . . . . 8  |-  F/_ m if ( n  e.  Prime ,  ( n ^ A
) ,  1 )
38 nfv 1539 . . . . . . . . 9  |-  F/ n  m  e.  Prime
39 nfcv 2336 . . . . . . . . . 10  |-  F/_ n m
40 nfcv 2336 . . . . . . . . . 10  |-  F/_ n ^
4139, 40, 3nfov 5948 . . . . . . . . 9  |-  F/_ n
( m ^ [_ m  /  n ]_ A
)
42 nfcv 2336 . . . . . . . . 9  |-  F/_ n
1
4338, 41, 42nfif 3585 . . . . . . . 8  |-  F/_ n if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 )
44 eleq1w 2254 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  e.  Prime  <->  m  e.  Prime ) )
45 id 19 . . . . . . . . . 10  |-  ( n  =  m  ->  n  =  m )
4645, 5oveq12d 5936 . . . . . . . . 9  |-  ( n  =  m  ->  (
n ^ A )  =  ( m ^ [_ m  /  n ]_ A ) )
4744, 46ifbieq1d 3579 . . . . . . . 8  |-  ( n  =  m  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4837, 43, 47cbvmpt 4124 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4936, 48eqtri 2214 . . . . . 6  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 ) )
508adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
51 simpr 110 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
5217adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ( ZZ>= `  N )
)
5349, 50, 24, 51, 9, 52pcmpt2 12482 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  pCnt  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
) )  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
5435, 53breqtrrd 4057 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
5554ralrimiva 2567 . . 3  |-  ( ph  ->  A. p  e.  Prime  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) ) )
5636, 1pcmptcl 12480 . . . . . . . 8  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
5756simprd 114 . . . . . . 7  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
58 eluznn 9665 . . . . . . . 8  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
5923, 17, 58syl2anc 411 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6057, 59ffvelcdmd 5694 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
6160nnzd 9438 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
6257, 23ffvelcdmd 5694 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
63 znq 9689 . . . . 5  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  QQ )
6461, 62, 63syl2anc 411 . . . 4  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  QQ )
65 pcz 12470 . . . 4  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  QQ  ->  ( (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6664, 65syl 14 . . 3  |-  ( ph  ->  ( ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6755, 66mpbird 167 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  ZZ )
6862nnzd 9438 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
6962nnne0d 9027 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  =/=  0 )
70 dvdsval2 11933 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  =/=  0  /\  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x.  ,  F ) `  M
)  <->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ ) )
7168, 69, 61, 70syl3anc 1249 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  N )  ||  (  seq 1
(  x.  ,  F
) `  M )  <->  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  ZZ ) )
7267, 71mpbird 167 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   A.wral 2472   [_csb 3080   ifcif 3557   class class class wbr 4029    |-> cmpt 4090   -->wf 5250   ` cfv 5254  (class class class)co 5918   0cc0 7872   1c1 7873    x. cmul 7877    <_ cle 8055    / cdiv 8691   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684    seqcseq 10518   ^cexp 10609    || cdvds 11930   Primecprime 12245    pCnt cpc 12422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-fin 6797  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-xnn0 9304  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246  df-pc 12423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator