| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pcmptdvds | Unicode version | ||
| Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.) |
| Ref | Expression |
|---|---|
| pcmpt.1 |
|
| pcmpt.2 |
|
| pcmpt.3 |
|
| pcmptdvds.3 |
|
| Ref | Expression |
|---|---|
| pcmptdvds |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcmpt.2 |
. . . . . . . . 9
| |
| 2 | nfv 1552 |
. . . . . . . . . 10
| |
| 3 | nfcsb1v 3127 |
. . . . . . . . . . 11
| |
| 4 | 3 | nfel1 2360 |
. . . . . . . . . 10
|
| 5 | csbeq1a 3103 |
. . . . . . . . . . 11
| |
| 6 | 5 | eleq1d 2275 |
. . . . . . . . . 10
|
| 7 | 2, 4, 6 | cbvralw 2733 |
. . . . . . . . 9
|
| 8 | 1, 7 | sylib 122 |
. . . . . . . 8
|
| 9 | csbeq1 3097 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq1d 2275 |
. . . . . . . . 9
|
| 11 | 10 | rspcv 2874 |
. . . . . . . 8
|
| 12 | 8, 11 | mpan9 281 |
. . . . . . 7
|
| 13 | 12 | nn0ge0d 9358 |
. . . . . 6
|
| 14 | 0le0 9132 |
. . . . . . 7
| |
| 15 | 14 | a1i 9 |
. . . . . 6
|
| 16 | prmz 12477 |
. . . . . . . 8
| |
| 17 | pcmptdvds.3 |
. . . . . . . . . 10
| |
| 18 | eluzelz 9664 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | syl 14 |
. . . . . . . . 9
|
| 20 | 19 | adantr 276 |
. . . . . . . 8
|
| 21 | zdcle 9456 |
. . . . . . . 8
| |
| 22 | 16, 20, 21 | syl2an2 594 |
. . . . . . 7
|
| 23 | pcmpt.3 |
. . . . . . . . . . 11
| |
| 24 | 23 | adantr 276 |
. . . . . . . . . 10
|
| 25 | 24 | nnzd 9501 |
. . . . . . . . 9
|
| 26 | zdcle 9456 |
. . . . . . . . 9
| |
| 27 | 16, 25, 26 | syl2an2 594 |
. . . . . . . 8
|
| 28 | dcn 844 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | dcan2 937 |
. . . . . . 7
| |
| 31 | 22, 29, 30 | sylc 62 |
. . . . . 6
|
| 32 | breq2 4051 |
. . . . . . 7
| |
| 33 | breq2 4051 |
. . . . . . 7
| |
| 34 | 32, 33 | ifbothdc 3606 |
. . . . . 6
|
| 35 | 13, 15, 31, 34 | syl3anc 1250 |
. . . . 5
|
| 36 | pcmpt.1 |
. . . . . . 7
| |
| 37 | nfcv 2349 |
. . . . . . . 8
| |
| 38 | nfv 1552 |
. . . . . . . . 9
| |
| 39 | nfcv 2349 |
. . . . . . . . . 10
| |
| 40 | nfcv 2349 |
. . . . . . . . . 10
| |
| 41 | 39, 40, 3 | nfov 5981 |
. . . . . . . . 9
|
| 42 | nfcv 2349 |
. . . . . . . . 9
| |
| 43 | 38, 41, 42 | nfif 3600 |
. . . . . . . 8
|
| 44 | eleq1w 2267 |
. . . . . . . . 9
| |
| 45 | id 19 |
. . . . . . . . . 10
| |
| 46 | 45, 5 | oveq12d 5969 |
. . . . . . . . 9
|
| 47 | 44, 46 | ifbieq1d 3594 |
. . . . . . . 8
|
| 48 | 37, 43, 47 | cbvmpt 4143 |
. . . . . . 7
|
| 49 | 36, 48 | eqtri 2227 |
. . . . . 6
|
| 50 | 8 | adantr 276 |
. . . . . 6
|
| 51 | simpr 110 |
. . . . . 6
| |
| 52 | 17 | adantr 276 |
. . . . . 6
|
| 53 | 49, 50, 24, 51, 9, 52 | pcmpt2 12711 |
. . . . 5
|
| 54 | 35, 53 | breqtrrd 4075 |
. . . 4
|
| 55 | 54 | ralrimiva 2580 |
. . 3
|
| 56 | 36, 1 | pcmptcl 12709 |
. . . . . . . 8
|
| 57 | 56 | simprd 114 |
. . . . . . 7
|
| 58 | eluznn 9728 |
. . . . . . . 8
| |
| 59 | 23, 17, 58 | syl2anc 411 |
. . . . . . 7
|
| 60 | 57, 59 | ffvelcdmd 5723 |
. . . . . 6
|
| 61 | 60 | nnzd 9501 |
. . . . 5
|
| 62 | 57, 23 | ffvelcdmd 5723 |
. . . . 5
|
| 63 | znq 9752 |
. . . . 5
| |
| 64 | 61, 62, 63 | syl2anc 411 |
. . . 4
|
| 65 | pcz 12699 |
. . . 4
| |
| 66 | 64, 65 | syl 14 |
. . 3
|
| 67 | 55, 66 | mpbird 167 |
. 2
|
| 68 | 62 | nnzd 9501 |
. . 3
|
| 69 | 62 | nnne0d 9088 |
. . 3
|
| 70 | dvdsval2 12145 |
. . 3
| |
| 71 | 68, 69, 61, 70 | syl3anc 1250 |
. 2
|
| 72 | 67, 71 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-1o 6509 df-2o 6510 df-er 6627 df-en 6835 df-fin 6837 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-xnn0 9366 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 df-prm 12474 df-pc 12652 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |