ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcmptdvds Unicode version

Theorem pcmptdvds 12876
Description: The partial products of the prime power map form a divisibility chain. (Contributed by Mario Carneiro, 12-Mar-2014.)
Hypotheses
Ref Expression
pcmpt.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
pcmpt.2  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
pcmpt.3  |-  ( ph  ->  N  e.  NN )
pcmptdvds.3  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
Assertion
Ref Expression
pcmptdvds  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )

Proof of Theorem pcmptdvds
Dummy variables  m  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcmpt.2 . . . . . . . . 9  |-  ( ph  ->  A. n  e.  Prime  A  e.  NN0 )
2 nfv 1574 . . . . . . . . . 10  |-  F/ m  A  e.  NN0
3 nfcsb1v 3157 . . . . . . . . . . 11  |-  F/_ n [_ m  /  n ]_ A
43nfel1 2383 . . . . . . . . . 10  |-  F/ n [_ m  /  n ]_ A  e.  NN0
5 csbeq1a 3133 . . . . . . . . . . 11  |-  ( n  =  m  ->  A  =  [_ m  /  n ]_ A )
65eleq1d 2298 . . . . . . . . . 10  |-  ( n  =  m  ->  ( A  e.  NN0  <->  [_ m  /  n ]_ A  e.  NN0 ) )
72, 4, 6cbvralw 2758 . . . . . . . . 9  |-  ( A. n  e.  Prime  A  e. 
NN0 
<-> 
A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
81, 7sylib 122 . . . . . . . 8  |-  ( ph  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
9 csbeq1 3127 . . . . . . . . . 10  |-  ( m  =  p  ->  [_ m  /  n ]_ A  = 
[_ p  /  n ]_ A )
109eleq1d 2298 . . . . . . . . 9  |-  ( m  =  p  ->  ( [_ m  /  n ]_ A  e.  NN0  <->  [_ p  /  n ]_ A  e.  NN0 ) )
1110rspcv 2903 . . . . . . . 8  |-  ( p  e.  Prime  ->  ( A. m  e.  Prime  [_ m  /  n ]_ A  e. 
NN0  ->  [_ p  /  n ]_ A  e.  NN0 ) )
128, 11mpan9 281 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  ->  [_ p  /  n ]_ A  e.  NN0 )
1312nn0ge0d 9433 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  [_ p  /  n ]_ A )
14 0le0 9207 . . . . . . 7  |-  0  <_  0
1514a1i 9 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  0 )
16 prmz 12641 . . . . . . . 8  |-  ( p  e.  Prime  ->  p  e.  ZZ )
17 pcmptdvds.3 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( ZZ>= `  N ) )
18 eluzelz 9739 . . . . . . . . . 10  |-  ( M  e.  ( ZZ>= `  N
)  ->  M  e.  ZZ )
1917, 18syl 14 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
2019adantr 276 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ZZ )
21 zdcle 9531 . . . . . . . 8  |-  ( ( p  e.  ZZ  /\  M  e.  ZZ )  -> DECID  p  <_  M )
2216, 20, 21syl2an2 596 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  M )
23 pcmpt.3 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
2423adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  NN )
2524nnzd 9576 . . . . . . . . 9  |-  ( (
ph  /\  p  e.  Prime )  ->  N  e.  ZZ )
26 zdcle 9531 . . . . . . . . 9  |-  ( ( p  e.  ZZ  /\  N  e.  ZZ )  -> DECID  p  <_  N )
2716, 25, 26syl2an2 596 . . . . . . . 8  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  p  <_  N )
28 dcn 847 . . . . . . . 8  |-  (DECID  p  <_  N  -> DECID  -.  p  <_  N )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  -.  p  <_  N
)
30 dcan2 940 . . . . . . 7  |-  (DECID  p  <_  M  ->  (DECID  -.  p  <_  N  -> DECID  ( p  <_  M  /\  -.  p  <_  N ) ) )
3122, 29, 30sylc 62 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  -> DECID  ( p  <_  M  /\  -.  p  <_  N
) )
32 breq2 4087 . . . . . . 7  |-  ( [_ p  /  n ]_ A  =  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  [_ p  /  n ]_ A  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
33 breq2 4087 . . . . . . 7  |-  ( 0  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 )  ->  ( 0  <_  0  <->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) ) )
3432, 33ifbothdc 3637 . . . . . 6  |-  ( ( 0  <_  [_ p  /  n ]_ A  /\  0  <_  0  /\ DECID  ( p  <_  M  /\  -.  p  <_  N
) )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) , 
[_ p  /  n ]_ A ,  0 ) )
3513, 15, 31, 34syl3anc 1271 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
36 pcmpt.1 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 ) )
37 nfcv 2372 . . . . . . . 8  |-  F/_ m if ( n  e.  Prime ,  ( n ^ A
) ,  1 )
38 nfv 1574 . . . . . . . . 9  |-  F/ n  m  e.  Prime
39 nfcv 2372 . . . . . . . . . 10  |-  F/_ n m
40 nfcv 2372 . . . . . . . . . 10  |-  F/_ n ^
4139, 40, 3nfov 6037 . . . . . . . . 9  |-  F/_ n
( m ^ [_ m  /  n ]_ A
)
42 nfcv 2372 . . . . . . . . 9  |-  F/_ n
1
4338, 41, 42nfif 3631 . . . . . . . 8  |-  F/_ n if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 )
44 eleq1w 2290 . . . . . . . . 9  |-  ( n  =  m  ->  (
n  e.  Prime  <->  m  e.  Prime ) )
45 id 19 . . . . . . . . . 10  |-  ( n  =  m  ->  n  =  m )
4645, 5oveq12d 6025 . . . . . . . . 9  |-  ( n  =  m  ->  (
n ^ A )  =  ( m ^ [_ m  /  n ]_ A ) )
4744, 46ifbieq1d 3625 . . . . . . . 8  |-  ( n  =  m  ->  if ( n  e.  Prime ,  ( n ^ A
) ,  1 )  =  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4837, 43, 47cbvmpt 4179 . . . . . . 7  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( n ^ A ) ,  1 ) )  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A ) ,  1 ) )
4936, 48eqtri 2250 . . . . . 6  |-  F  =  ( m  e.  NN  |->  if ( m  e.  Prime ,  ( m ^ [_ m  /  n ]_ A
) ,  1 ) )
508adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  A. m  e.  Prime  [_ m  /  n ]_ A  e.  NN0 )
51 simpr 110 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  p  e.  Prime )
5217adantr 276 . . . . . 6  |-  ( (
ph  /\  p  e.  Prime )  ->  M  e.  ( ZZ>= `  N )
)
5349, 50, 24, 51, 9, 52pcmpt2 12875 . . . . 5  |-  ( (
ph  /\  p  e.  Prime )  ->  ( p  pCnt  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
) )  =  if ( ( p  <_  M  /\  -.  p  <_  N ) ,  [_ p  /  n ]_ A ,  0 ) )
5435, 53breqtrrd 4111 . . . 4  |-  ( (
ph  /\  p  e.  Prime )  ->  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) )
5554ralrimiva 2603 . . 3  |-  ( ph  ->  A. p  e.  Prime  0  <_  ( p  pCnt  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) ) ) )
5636, 1pcmptcl 12873 . . . . . . . 8  |-  ( ph  ->  ( F : NN --> NN  /\  seq 1 (  x.  ,  F ) : NN --> NN ) )
5756simprd 114 . . . . . . 7  |-  ( ph  ->  seq 1 (  x.  ,  F ) : NN --> NN )
58 eluznn 9803 . . . . . . . 8  |-  ( ( N  e.  NN  /\  M  e.  ( ZZ>= `  N ) )  ->  M  e.  NN )
5923, 17, 58syl2anc 411 . . . . . . 7  |-  ( ph  ->  M  e.  NN )
6057, 59ffvelcdmd 5773 . . . . . 6  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  NN )
6160nnzd 9576 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )
6257, 23ffvelcdmd 5773 . . . . 5  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  NN )
63 znq 9827 . . . . 5  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  e.  NN )  ->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  QQ )
6461, 62, 63syl2anc 411 . . . 4  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  QQ )
65 pcz 12863 . . . 4  |-  ( ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  QQ  ->  ( (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6664, 65syl 14 . . 3  |-  ( ph  ->  ( ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ  <->  A. p  e.  Prime  0  <_  ( p  pCnt  (
(  seq 1 (  x.  ,  F ) `  M )  /  (  seq 1 (  x.  ,  F ) `  N
) ) ) ) )
6755, 66mpbird 167 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  M )  /  (  seq 1
(  x.  ,  F
) `  N )
)  e.  ZZ )
6862nnzd 9576 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ )
6962nnne0d 9163 . . 3  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  =/=  0 )
70 dvdsval2 12309 . . 3  |-  ( ( (  seq 1 (  x.  ,  F ) `
 N )  e.  ZZ  /\  (  seq 1 (  x.  ,  F ) `  N
)  =/=  0  /\  (  seq 1 (  x.  ,  F ) `
 M )  e.  ZZ )  ->  (
(  seq 1 (  x.  ,  F ) `  N )  ||  (  seq 1 (  x.  ,  F ) `  M
)  <->  ( (  seq 1 (  x.  ,  F ) `  M
)  /  (  seq 1 (  x.  ,  F ) `  N
) )  e.  ZZ ) )
7168, 69, 61, 70syl3anc 1271 . 2  |-  ( ph  ->  ( (  seq 1
(  x.  ,  F
) `  N )  ||  (  seq 1
(  x.  ,  F
) `  M )  <->  ( (  seq 1 (  x.  ,  F ) `
 M )  / 
(  seq 1 (  x.  ,  F ) `  N ) )  e.  ZZ ) )
7267, 71mpbird 167 1  |-  ( ph  ->  (  seq 1 (  x.  ,  F ) `
 N )  ||  (  seq 1 (  x.  ,  F ) `  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   [_csb 3124   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6007   0cc0 8007   1c1 8008    x. cmul 8012    <_ cle 8190    / cdiv 8827   NNcn 9118   NN0cn0 9377   ZZcz 9454   ZZ>=cuz 9730   QQcq 9822    seqcseq 10677   ^cexp 10768    || cdvds 12306   Primecprime 12637    pCnt cpc 12815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-1o 6568  df-2o 6569  df-er 6688  df-en 6896  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378  df-xnn0 9441  df-z 9455  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-fl 10498  df-mod 10553  df-seqfrec 10678  df-exp 10769  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-dvds 12307  df-gcd 12483  df-prm 12638  df-pc 12816
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator