ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralfw Unicode version

Theorem cbvralfw 2695
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 2697 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1507 and ax-bndl 1509 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 23-May-2024.)
Hypotheses
Ref Expression
cbvralfw.1  |-  F/_ x A
cbvralfw.2  |-  F/_ y A
cbvralfw.3  |-  F/ y
ph
cbvralfw.4  |-  F/ x ps
cbvralfw.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralfw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem cbvralfw
StepHypRef Expression
1 cbvralfw.2 . . . . 5  |-  F/_ y A
21nfcri 2313 . . . 4  |-  F/ y  x  e.  A
3 cbvralfw.3 . . . 4  |-  F/ y
ph
42, 3nfim 1572 . . 3  |-  F/ y ( x  e.  A  ->  ph )
5 cbvralfw.1 . . . . 5  |-  F/_ x A
65nfcri 2313 . . . 4  |-  F/ x  y  e.  A
7 cbvralfw.4 . . . 4  |-  F/ x ps
86, 7nfim 1572 . . 3  |-  F/ x
( y  e.  A  ->  ps )
9 eleq1w 2238 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
10 cbvralfw.5 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
119, 10imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
124, 8, 11cbvalv1 1751 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
13 df-ral 2460 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
14 df-ral 2460 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
1512, 13, 143bitr4i 212 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1460    e. wcel 2148   F/_wnfc 2306   A.wral 2455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460
This theorem is referenced by:  cbvralw  2699  nnwofdc  12042
  Copyright terms: Public domain W3C validator