ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvralfw Unicode version

Theorem cbvralfw 2731
Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 2733 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1531 and ax-bndl 1533 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.)
Hypotheses
Ref Expression
cbvralfw.1  |-  F/_ x A
cbvralfw.2  |-  F/_ y A
cbvralfw.3  |-  F/ y
ph
cbvralfw.4  |-  F/ x ps
cbvralfw.5  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvralfw  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    A( x, y)

Proof of Theorem cbvralfw
StepHypRef Expression
1 cbvralfw.2 . . . . 5  |-  F/_ y A
21nfcri 2344 . . . 4  |-  F/ y  x  e.  A
3 cbvralfw.3 . . . 4  |-  F/ y
ph
42, 3nfim 1596 . . 3  |-  F/ y ( x  e.  A  ->  ph )
5 cbvralfw.1 . . . . 5  |-  F/_ x A
65nfcri 2344 . . . 4  |-  F/ x  y  e.  A
7 cbvralfw.4 . . . 4  |-  F/ x ps
86, 7nfim 1596 . . 3  |-  F/ x
( y  e.  A  ->  ps )
9 eleq1w 2268 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
10 cbvralfw.5 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
119, 10imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  ->  ph )  <->  ( y  e.  A  ->  ps )
) )
124, 8, 11cbvalv1 1775 . 2  |-  ( A. x ( x  e.  A  ->  ph )  <->  A. y
( y  e.  A  ->  ps ) )
13 df-ral 2491 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
14 df-ral 2491 . 2  |-  ( A. y  e.  A  ps  <->  A. y ( y  e.  A  ->  ps )
)
1512, 13, 143bitr4i 212 1  |-  ( A. x  e.  A  ph  <->  A. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   F/wnf 1484    e. wcel 2178   F/_wnfc 2337   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  cbvralw  2735  nnwofdc  12474
  Copyright terms: Public domain W3C validator