ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvreuv Unicode version

Theorem cbvreuv 2767
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
cbvralv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvreuv  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Distinct variable groups:    x, A    y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1574 . 2  |-  F/ y
ph
2 nfv 1574 . 2  |-  F/ x ps
3 cbvralv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvreu 2763 1  |-  ( E! x  e.  A  ph  <->  E! y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E!wreu 2510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-cleq 2222  df-clel 2225  df-reu 2515
This theorem is referenced by:  reu8  2999
  Copyright terms: Public domain W3C validator