ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmov Unicode version

Theorem cbvrmov 2704
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
cbvralv.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrmov  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Distinct variable groups:    x, A    y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1526 . 2  |-  F/ y
ph
2 nfv 1526 . 2  |-  F/ x ps
3 cbvralv.1 . 2  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
41, 2, 3cbvrmo 2700 1  |-  ( E* x  e.  A  ph  <->  E* y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E*wrmo 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-reu 2460  df-rmo 2461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator