| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvreu | Unicode version | ||
| Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| cbvral.1 | 
 | 
| cbvral.2 | 
 | 
| cbvral.3 | 
 | 
| Ref | Expression | 
|---|---|
| cbvreu | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. . . 4
 | |
| 2 | 1 | sb8eu 2058 | 
. . 3
 | 
| 3 | sban 1974 | 
. . . 4
 | |
| 4 | 3 | eubii 2054 | 
. . 3
 | 
| 5 | clelsb1 2301 | 
. . . . . 6
 | |
| 6 | 5 | anbi1i 458 | 
. . . . 5
 | 
| 7 | 6 | eubii 2054 | 
. . . 4
 | 
| 8 | nfv 1542 | 
. . . . . 6
 | |
| 9 | cbvral.1 | 
. . . . . . 7
 | |
| 10 | 9 | nfsb 1965 | 
. . . . . 6
 | 
| 11 | 8, 10 | nfan 1579 | 
. . . . 5
 | 
| 12 | nfv 1542 | 
. . . . 5
 | |
| 13 | eleq1 2259 | 
. . . . . 6
 | |
| 14 | sbequ 1854 | 
. . . . . . 7
 | |
| 15 | cbvral.2 | 
. . . . . . . 8
 | |
| 16 | cbvral.3 | 
. . . . . . . 8
 | |
| 17 | 15, 16 | sbie 1805 | 
. . . . . . 7
 | 
| 18 | 14, 17 | bitrdi 196 | 
. . . . . 6
 | 
| 19 | 13, 18 | anbi12d 473 | 
. . . . 5
 | 
| 20 | 11, 12, 19 | cbveu 2069 | 
. . . 4
 | 
| 21 | 7, 20 | bitri 184 | 
. . 3
 | 
| 22 | 2, 4, 21 | 3bitri 206 | 
. 2
 | 
| 23 | df-reu 2482 | 
. 2
 | |
| 24 | df-reu 2482 | 
. 2
 | |
| 25 | 22, 23, 24 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-cleq 2189 df-clel 2192 df-reu 2482 | 
| This theorem is referenced by: cbvrmo 2728 cbvreuv 2731 | 
| Copyright terms: Public domain | W3C validator |