ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem2 Unicode version

Theorem 4sqlem2 12827
Description: Lemma for 4sq 12848. Change bound variables in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem2  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Distinct variable groups:    a, b, c, d, n, w, x, y, z    A, a, b, c, d, n    S, a, b, c, d, n
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem2
StepHypRef Expression
1 4sq.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
21eleq2i 2274 . 2  |-  ( A  e.  S  <->  A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) } )
3 zsqcl2 10799 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  (
a ^ 2 )  e.  NN0 )
43ad2antrr 488 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a ^ 2 )  e.  NN0 )
5 zsqcl2 10799 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  (
b ^ 2 )  e.  NN0 )
65ad2antlr 489 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( b ^ 2 )  e.  NN0 )
74, 6nn0addcld 9387 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( a ^
2 )  +  ( b ^ 2 ) )  e.  NN0 )
8 zsqcl2 10799 . . . . . . . . . 10  |-  ( c  e.  ZZ  ->  (
c ^ 2 )  e.  NN0 )
98ad2antrl 490 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c ^ 2 )  e.  NN0 )
10 zsqcl2 10799 . . . . . . . . . 10  |-  ( d  e.  ZZ  ->  (
d ^ 2 )  e.  NN0 )
1110ad2antll 491 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( d ^ 2 )  e.  NN0 )
129, 11nn0addcld 9387 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( c ^
2 )  +  ( d ^ 2 ) )  e.  NN0 )
137, 12nn0addcld 9387 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e.  NN0 )
14 eleq1 2270 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  e.  NN0  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e. 
NN0 ) )
1513, 14syl5ibrcom 157 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  NN0 ) )
16 elex 2788 . . . . . 6  |-  ( A  e.  NN0  ->  A  e. 
_V )
1715, 16syl6 33 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1817rexlimdvva 2633 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1918rexlimivv 2631 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V )
20 oveq1 5974 . . . . . . . . 9  |-  ( x  =  a  ->  (
x ^ 2 )  =  ( a ^
2 ) )
2120oveq1d 5982 . . . . . . . 8  |-  ( x  =  a  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( y ^ 2 ) ) )
2221oveq1d 5982 . . . . . . 7  |-  ( x  =  a  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2322eqeq2d 2219 . . . . . 6  |-  ( x  =  a  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
24232rexbidv 2533 . . . . 5  |-  ( x  =  a  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
25 oveq1 5974 . . . . . . . . 9  |-  ( y  =  b  ->  (
y ^ 2 )  =  ( b ^
2 ) )
2625oveq2d 5983 . . . . . . . 8  |-  ( y  =  b  ->  (
( a ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
2726oveq1d 5982 . . . . . . 7  |-  ( y  =  b  ->  (
( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2827eqeq2d 2219 . . . . . 6  |-  ( y  =  b  ->  (
n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
29282rexbidv 2533 . . . . 5  |-  ( y  =  b  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
3024, 29cbvrex2vw 2754 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
31 oveq1 5974 . . . . . . . . . 10  |-  ( z  =  c  ->  (
z ^ 2 )  =  ( c ^
2 ) )
3231oveq1d 5982 . . . . . . . . 9  |-  ( z  =  c  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )
3332oveq2d 5983 . . . . . . . 8  |-  ( z  =  c  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( w ^ 2 ) ) ) )
3433eqeq2d 2219 . . . . . . 7  |-  ( z  =  c  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) ) ) )
35 oveq1 5974 . . . . . . . . . 10  |-  ( w  =  d  ->  (
w ^ 2 )  =  ( d ^
2 ) )
3635oveq2d 5983 . . . . . . . . 9  |-  ( w  =  d  ->  (
( c ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3736oveq2d 5983 . . . . . . . 8  |-  ( w  =  d  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3837eqeq2d 2219 . . . . . . 7  |-  ( w  =  d  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
3934, 38cbvrex2vw 2754 . . . . . 6  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
40 eqeq1 2214 . . . . . . 7  |-  ( n  =  A  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  A  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
41402rexbidv 2533 . . . . . 6  |-  ( n  =  A  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4239, 41bitrid 192 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
43422rexbidv 2533 . . . 4  |-  ( n  =  A  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4430, 43bitrid 192 . . 3  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4519, 44elab3 2932 . 2  |-  ( A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
462, 45bitri 184 1  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   _Vcvv 2776  (class class class)co 5967    + caddc 7963   2c2 9122   NN0cn0 9330   ZZcz 9407   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  4sqlem3  12828  4sqlem4  12830  4sqlem18  12846  4sq  12848
  Copyright terms: Public domain W3C validator