ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem2 Unicode version

Theorem 4sqlem2 12712
Description: Lemma for 4sq 12733. Change bound variables in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem2  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Distinct variable groups:    a, b, c, d, n, w, x, y, z    A, a, b, c, d, n    S, a, b, c, d, n
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem2
StepHypRef Expression
1 4sq.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
21eleq2i 2272 . 2  |-  ( A  e.  S  <->  A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) } )
3 zsqcl2 10762 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  (
a ^ 2 )  e.  NN0 )
43ad2antrr 488 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a ^ 2 )  e.  NN0 )
5 zsqcl2 10762 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  (
b ^ 2 )  e.  NN0 )
65ad2antlr 489 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( b ^ 2 )  e.  NN0 )
74, 6nn0addcld 9352 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( a ^
2 )  +  ( b ^ 2 ) )  e.  NN0 )
8 zsqcl2 10762 . . . . . . . . . 10  |-  ( c  e.  ZZ  ->  (
c ^ 2 )  e.  NN0 )
98ad2antrl 490 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c ^ 2 )  e.  NN0 )
10 zsqcl2 10762 . . . . . . . . . 10  |-  ( d  e.  ZZ  ->  (
d ^ 2 )  e.  NN0 )
1110ad2antll 491 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( d ^ 2 )  e.  NN0 )
129, 11nn0addcld 9352 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( c ^
2 )  +  ( d ^ 2 ) )  e.  NN0 )
137, 12nn0addcld 9352 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e.  NN0 )
14 eleq1 2268 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  e.  NN0  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e. 
NN0 ) )
1513, 14syl5ibrcom 157 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  NN0 ) )
16 elex 2783 . . . . . 6  |-  ( A  e.  NN0  ->  A  e. 
_V )
1715, 16syl6 33 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1817rexlimdvva 2631 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1918rexlimivv 2629 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V )
20 oveq1 5951 . . . . . . . . 9  |-  ( x  =  a  ->  (
x ^ 2 )  =  ( a ^
2 ) )
2120oveq1d 5959 . . . . . . . 8  |-  ( x  =  a  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( y ^ 2 ) ) )
2221oveq1d 5959 . . . . . . 7  |-  ( x  =  a  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2322eqeq2d 2217 . . . . . 6  |-  ( x  =  a  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
24232rexbidv 2531 . . . . 5  |-  ( x  =  a  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
25 oveq1 5951 . . . . . . . . 9  |-  ( y  =  b  ->  (
y ^ 2 )  =  ( b ^
2 ) )
2625oveq2d 5960 . . . . . . . 8  |-  ( y  =  b  ->  (
( a ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
2726oveq1d 5959 . . . . . . 7  |-  ( y  =  b  ->  (
( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2827eqeq2d 2217 . . . . . 6  |-  ( y  =  b  ->  (
n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
29282rexbidv 2531 . . . . 5  |-  ( y  =  b  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
3024, 29cbvrex2vw 2750 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
31 oveq1 5951 . . . . . . . . . 10  |-  ( z  =  c  ->  (
z ^ 2 )  =  ( c ^
2 ) )
3231oveq1d 5959 . . . . . . . . 9  |-  ( z  =  c  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )
3332oveq2d 5960 . . . . . . . 8  |-  ( z  =  c  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( w ^ 2 ) ) ) )
3433eqeq2d 2217 . . . . . . 7  |-  ( z  =  c  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) ) ) )
35 oveq1 5951 . . . . . . . . . 10  |-  ( w  =  d  ->  (
w ^ 2 )  =  ( d ^
2 ) )
3635oveq2d 5960 . . . . . . . . 9  |-  ( w  =  d  ->  (
( c ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3736oveq2d 5960 . . . . . . . 8  |-  ( w  =  d  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3837eqeq2d 2217 . . . . . . 7  |-  ( w  =  d  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
3934, 38cbvrex2vw 2750 . . . . . 6  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
40 eqeq1 2212 . . . . . . 7  |-  ( n  =  A  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  A  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
41402rexbidv 2531 . . . . . 6  |-  ( n  =  A  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4239, 41bitrid 192 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
43422rexbidv 2531 . . . 4  |-  ( n  =  A  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4430, 43bitrid 192 . . 3  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4519, 44elab3 2925 . 2  |-  ( A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
462, 45bitri 184 1  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   E.wrex 2485   _Vcvv 2772  (class class class)co 5944    + caddc 7928   2c2 9087   NN0cn0 9295   ZZcz 9372   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593  df-exp 10684
This theorem is referenced by:  4sqlem3  12713  4sqlem4  12715  4sqlem18  12731  4sq  12733
  Copyright terms: Public domain W3C validator