Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem2 | Unicode version |
Description: Lemma for 4sq (not yet proved here) . Change bound variables in . (Contributed by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
4sq.1 |
Ref | Expression |
---|---|
4sqlem2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sq.1 | . . 3 | |
2 | 1 | eleq2i 2237 | . 2 |
3 | zsqcl2 10542 | . . . . . . . . . 10 | |
4 | 3 | ad2antrr 485 | . . . . . . . . 9 |
5 | zsqcl2 10542 | . . . . . . . . . 10 | |
6 | 5 | ad2antlr 486 | . . . . . . . . 9 |
7 | 4, 6 | nn0addcld 9181 | . . . . . . . 8 |
8 | zsqcl2 10542 | . . . . . . . . . 10 | |
9 | 8 | ad2antrl 487 | . . . . . . . . 9 |
10 | zsqcl2 10542 | . . . . . . . . . 10 | |
11 | 10 | ad2antll 488 | . . . . . . . . 9 |
12 | 9, 11 | nn0addcld 9181 | . . . . . . . 8 |
13 | 7, 12 | nn0addcld 9181 | . . . . . . 7 |
14 | eleq1 2233 | . . . . . . 7 | |
15 | 13, 14 | syl5ibrcom 156 | . . . . . 6 |
16 | elex 2741 | . . . . . 6 | |
17 | 15, 16 | syl6 33 | . . . . 5 |
18 | 17 | rexlimdvva 2595 | . . . 4 |
19 | 18 | rexlimivv 2593 | . . 3 |
20 | oveq1 5858 | . . . . . . . . 9 | |
21 | 20 | oveq1d 5866 | . . . . . . . 8 |
22 | 21 | oveq1d 5866 | . . . . . . 7 |
23 | 22 | eqeq2d 2182 | . . . . . 6 |
24 | 23 | 2rexbidv 2495 | . . . . 5 |
25 | oveq1 5858 | . . . . . . . . 9 | |
26 | 25 | oveq2d 5867 | . . . . . . . 8 |
27 | 26 | oveq1d 5866 | . . . . . . 7 |
28 | 27 | eqeq2d 2182 | . . . . . 6 |
29 | 28 | 2rexbidv 2495 | . . . . 5 |
30 | 24, 29 | cbvrex2vw 2708 | . . . 4 |
31 | oveq1 5858 | . . . . . . . . . 10 | |
32 | 31 | oveq1d 5866 | . . . . . . . . 9 |
33 | 32 | oveq2d 5867 | . . . . . . . 8 |
34 | 33 | eqeq2d 2182 | . . . . . . 7 |
35 | oveq1 5858 | . . . . . . . . . 10 | |
36 | 35 | oveq2d 5867 | . . . . . . . . 9 |
37 | 36 | oveq2d 5867 | . . . . . . . 8 |
38 | 37 | eqeq2d 2182 | . . . . . . 7 |
39 | 34, 38 | cbvrex2vw 2708 | . . . . . 6 |
40 | eqeq1 2177 | . . . . . . 7 | |
41 | 40 | 2rexbidv 2495 | . . . . . 6 |
42 | 39, 41 | syl5bb 191 | . . . . 5 |
43 | 42 | 2rexbidv 2495 | . . . 4 |
44 | 30, 43 | syl5bb 191 | . . 3 |
45 | 19, 44 | elab3 2882 | . 2 |
46 | 2, 45 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 wrex 2449 cvv 2730 (class class class)co 5851 caddc 7766 c2 8918 cn0 9124 cz 9201 cexp 10464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7854 ax-resscn 7855 ax-1cn 7856 ax-1re 7857 ax-icn 7858 ax-addcl 7859 ax-addrcl 7860 ax-mulcl 7861 ax-mulrcl 7862 ax-addcom 7863 ax-mulcom 7864 ax-addass 7865 ax-mulass 7866 ax-distr 7867 ax-i2m1 7868 ax-0lt1 7869 ax-1rid 7870 ax-0id 7871 ax-rnegex 7872 ax-precex 7873 ax-cnre 7874 ax-pre-ltirr 7875 ax-pre-ltwlin 7876 ax-pre-lttrn 7877 ax-pre-apti 7878 ax-pre-ltadd 7879 ax-pre-mulgt0 7880 ax-pre-mulext 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7945 df-mnf 7946 df-xr 7947 df-ltxr 7948 df-le 7949 df-sub 8081 df-neg 8082 df-reap 8483 df-ap 8490 df-div 8579 df-inn 8868 df-2 8926 df-n0 9125 df-z 9202 df-uz 9477 df-seqfrec 10391 df-exp 10465 |
This theorem is referenced by: 4sqlem3 12331 4sqlem4 12333 |
Copyright terms: Public domain | W3C validator |