ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem2 Unicode version

Theorem 4sqlem2 12389
Description: Lemma for 4sq (not yet proved here) . Change bound variables in  S. (Contributed by Mario Carneiro, 14-Jul-2014.)
Hypothesis
Ref Expression
4sq.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlem2  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Distinct variable groups:    a, b, c, d, n, w, x, y, z    A, a, b, c, d, n    S, a, b, c, d, n
Allowed substitution hints:    A( x, y, z, w)    S( x, y, z, w)

Proof of Theorem 4sqlem2
StepHypRef Expression
1 4sq.1 . . 3  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
21eleq2i 2244 . 2  |-  ( A  e.  S  <->  A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) } )
3 zsqcl2 10600 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  (
a ^ 2 )  e.  NN0 )
43ad2antrr 488 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( a ^ 2 )  e.  NN0 )
5 zsqcl2 10600 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  (
b ^ 2 )  e.  NN0 )
65ad2antlr 489 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( b ^ 2 )  e.  NN0 )
74, 6nn0addcld 9235 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( a ^
2 )  +  ( b ^ 2 ) )  e.  NN0 )
8 zsqcl2 10600 . . . . . . . . . 10  |-  ( c  e.  ZZ  ->  (
c ^ 2 )  e.  NN0 )
98ad2antrl 490 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( c ^ 2 )  e.  NN0 )
10 zsqcl2 10600 . . . . . . . . . 10  |-  ( d  e.  ZZ  ->  (
d ^ 2 )  e.  NN0 )
1110ad2antll 491 . . . . . . . . 9  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( d ^ 2 )  e.  NN0 )
129, 11nn0addcld 9235 . . . . . . . 8  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( c ^
2 )  +  ( d ^ 2 ) )  e.  NN0 )
137, 12nn0addcld 9235 . . . . . . 7  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e.  NN0 )
14 eleq1 2240 . . . . . . 7  |-  ( A  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  ->  ( A  e.  NN0  <->  ( (
( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  e. 
NN0 ) )
1513, 14syl5ibrcom 157 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  NN0 ) )
16 elex 2750 . . . . . 6  |-  ( A  e.  NN0  ->  A  e. 
_V )
1715, 16syl6 33 . . . . 5  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  ( c  e.  ZZ  /\  d  e.  ZZ ) )  -> 
( A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1817rexlimdvva 2602 . . . 4  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V ) )
1918rexlimivv 2600 . . 3  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) )  ->  A  e.  _V )
20 oveq1 5884 . . . . . . . . 9  |-  ( x  =  a  ->  (
x ^ 2 )  =  ( a ^
2 ) )
2120oveq1d 5892 . . . . . . . 8  |-  ( x  =  a  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( y ^ 2 ) ) )
2221oveq1d 5892 . . . . . . 7  |-  ( x  =  a  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2322eqeq2d 2189 . . . . . 6  |-  ( x  =  a  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
24232rexbidv 2502 . . . . 5  |-  ( x  =  a  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
25 oveq1 5884 . . . . . . . . 9  |-  ( y  =  b  ->  (
y ^ 2 )  =  ( b ^
2 ) )
2625oveq2d 5893 . . . . . . . 8  |-  ( y  =  b  ->  (
( a ^ 2 )  +  ( y ^ 2 ) )  =  ( ( a ^ 2 )  +  ( b ^ 2 ) ) )
2726oveq1d 5892 . . . . . . 7  |-  ( y  =  b  ->  (
( ( a ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
2827eqeq2d 2189 . . . . . 6  |-  ( y  =  b  ->  (
n  =  ( ( ( a ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
29282rexbidv 2502 . . . . 5  |-  ( y  =  b  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
3024, 29cbvrex2vw 2717 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
31 oveq1 5884 . . . . . . . . . 10  |-  ( z  =  c  ->  (
z ^ 2 )  =  ( c ^
2 ) )
3231oveq1d 5892 . . . . . . . . 9  |-  ( z  =  c  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )
3332oveq2d 5893 . . . . . . . 8  |-  ( z  =  c  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( w ^ 2 ) ) ) )
3433eqeq2d 2189 . . . . . . 7  |-  ( z  =  c  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) ) ) )
35 oveq1 5884 . . . . . . . . . 10  |-  ( w  =  d  ->  (
w ^ 2 )  =  ( d ^
2 ) )
3635oveq2d 5893 . . . . . . . . 9  |-  ( w  =  d  ->  (
( c ^ 2 )  +  ( w ^ 2 ) )  =  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )
3736oveq2d 5893 . . . . . . . 8  |-  ( w  =  d  ->  (
( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^
2 ) ) )  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) ) )
3837eqeq2d 2189 . . . . . . 7  |-  ( w  =  d  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( w ^ 2 ) ) )  <->  n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
3934, 38cbvrex2vw 2717 . . . . . 6  |-  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
40 eqeq1 2184 . . . . . . 7  |-  ( n  =  A  ->  (
n  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) )  <->  A  =  ( ( ( a ^ 2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^ 2 ) ) ) ) )
41402rexbidv 2502 . . . . . 6  |-  ( n  =  A  ->  ( E. c  e.  ZZ  E. d  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( c ^
2 )  +  ( d ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4239, 41bitrid 192 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^ 2 )  +  ( b ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
43422rexbidv 2502 . . . 4  |-  ( n  =  A  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4430, 43bitrid 192 . . 3  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) ) )
4519, 44elab3 2891 . 2  |-  ( A  e.  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
462, 45bitri 184 1  |-  ( A  e.  S  <->  E. a  e.  ZZ  E. b  e.  ZZ  E. c  e.  ZZ  E. d  e.  ZZ  A  =  ( ( ( a ^
2 )  +  ( b ^ 2 ) )  +  ( ( c ^ 2 )  +  ( d ^
2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   E.wrex 2456   _Vcvv 2739  (class class class)co 5877    + caddc 7816   2c2 8972   NN0cn0 9178   ZZcz 9255   ^cexp 10521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448  df-exp 10522
This theorem is referenced by:  4sqlem3  12390  4sqlem4  12392
  Copyright terms: Public domain W3C validator