ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrex2v Unicode version

Theorem cbvrex2v 2752
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by FL, 2-Jul-2012.)
Hypotheses
Ref Expression
cbvrex2v.1  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvrex2v.2  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvrex2v  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Distinct variable groups:    x, A    z, A    w, B    x, B, y    z, B, y    ch, w    ch, x    ph, z    ps, y
Allowed substitution hints:    ph( x, y, w)    ps( x, z, w)    ch( y, z)    A( y, w)

Proof of Theorem cbvrex2v
StepHypRef Expression
1 cbvrex2v.1 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
21rexbidv 2507 . . 3  |-  ( x  =  z  ->  ( E. y  e.  B  ph  <->  E. y  e.  B  ch ) )
32cbvrexv 2739 . 2  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. y  e.  B  ch )
4 cbvrex2v.2 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
54cbvrexv 2739 . . 3  |-  ( E. y  e.  B  ch  <->  E. w  e.  B  ps )
65rexbii 2513 . 2  |-  ( E. z  e.  A  E. y  e.  B  ch  <->  E. z  e.  A  E. w  e.  B  ps )
73, 6bitri 184 1  |-  ( E. x  e.  A  E. y  e.  B  ph  <->  E. z  e.  A  E. w  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490
This theorem is referenced by:  eroveu  6713  genipv  7622  bezoutlemnewy  12317  xmettx  14982
  Copyright terms: Public domain W3C validator