ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexvw Unicode version

Theorem cbvrexvw 2731
Description: Version of cbvrexv 2727 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrexvw  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrexvw
StepHypRef Expression
1 eleq1w 2254 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
43cbvexvw 1932 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. y ( y  e.  A  /\  ps )
)
5 df-rex 2478 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 df-rex 2478 . 2  |-  ( E. y  e.  A  ps  <->  E. y ( y  e.  A  /\  ps )
)
74, 5, 63bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-clel 2189  df-rex 2478
This theorem is referenced by:  cbvrex2vw  2738  prodmodclem2  11720  prodmodc  11721  zsupssdc  12091  pceu  12433  4sqlem12  12540  nninfdclemcl  12605  grprida  12970  dfgrp2  13099  dfgrp3mlem  13170  lss1d  13879  bj-charfunbi  15303
  Copyright terms: Public domain W3C validator