| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvrexvw | Unicode version | ||
| Description: Version of cbvrexv 2739 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.) |
| Ref | Expression |
|---|---|
| cbvralvw.1 |
|
| Ref | Expression |
|---|---|
| cbvrexvw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2266 |
. . . 4
| |
| 2 | cbvralvw.1 |
. . . 4
| |
| 3 | 1, 2 | anbi12d 473 |
. . 3
|
| 4 | 3 | cbvexvw 1944 |
. 2
|
| 5 | df-rex 2490 |
. 2
| |
| 6 | df-rex 2490 |
. 2
| |
| 7 | 4, 5, 6 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-clel 2201 df-rex 2490 |
| This theorem is referenced by: cbvrex2vw 2750 zsupssdc 10381 prodmodclem2 11888 prodmodc 11889 pceu 12618 4sqlem12 12725 nninfdclemcl 12819 grprida 13219 dfgrp2 13359 dfgrp3mlem 13430 lss1d 14145 2lgslem1b 15566 bj-charfunbi 15751 |
| Copyright terms: Public domain | W3C validator |