ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexvw Unicode version

Theorem cbvrexvw 2770
Description: Version of cbvrexv 2766 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.) Reduce axiom usage. (Revised by GG, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrexvw  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrexvw
StepHypRef Expression
1 eleq1w 2290 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
43cbvexvw 1967 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. y ( y  e.  A  /\  ps )
)
5 df-rex 2514 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 df-rex 2514 . 2  |-  ( E. y  e.  A  ps  <->  E. y ( y  e.  A  /\  ps )
)
74, 5, 63bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1538    e. wcel 2200   E.wrex 2509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-clel 2225  df-rex 2514
This theorem is referenced by:  cbvrex2vw  2777  zsupssdc  10458  prodmodclem2  12088  prodmodc  12089  pceu  12818  4sqlem12  12925  nninfdclemcl  13019  grprida  13420  dfgrp2  13560  dfgrp3mlem  13631  lss1d  14347  2lgslem1b  15768  bj-charfunbi  16174
  Copyright terms: Public domain W3C validator