ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrexvw Unicode version

Theorem cbvrexvw 2708
Description: Version of cbvrexv 2704 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
Hypothesis
Ref Expression
cbvralvw.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvrexvw  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Distinct variable groups:    x, y, A    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem cbvrexvw
StepHypRef Expression
1 eleq1w 2238 . . . 4  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
2 cbvralvw.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
31, 2anbi12d 473 . . 3  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  ps )
) )
43cbvexvw 1920 . 2  |-  ( E. x ( x  e.  A  /\  ph )  <->  E. y ( y  e.  A  /\  ps )
)
5 df-rex 2461 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
6 df-rex 2461 . 2  |-  ( E. y  e.  A  ps  <->  E. y ( y  e.  A  /\  ps )
)
74, 5, 63bitr4i 212 1  |-  ( E. x  e.  A  ph  <->  E. y  e.  A  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1492    e. wcel 2148   E.wrex 2456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-clel 2173  df-rex 2461
This theorem is referenced by:  cbvrex2vw  2715  prodmodclem2  11584  prodmodc  11585  zsupssdc  11954  pceu  12294  grpridd  12805  dfgrp2  12901  dfgrp3mlem  12967  bj-charfunbi  14533
  Copyright terms: Public domain W3C validator