| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral2v | Unicode version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| cbvral2v.1 |
|
| cbvral2v.2 |
|
| Ref | Expression |
|---|---|
| cbvral2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral2v.1 |
. . . 4
| |
| 2 | 1 | ralbidv 2506 |
. . 3
|
| 3 | 2 | cbvralv 2738 |
. 2
|
| 4 | cbvral2v.2 |
. . . 4
| |
| 5 | 4 | cbvralv 2738 |
. . 3
|
| 6 | 5 | ralbii 2512 |
. 2
|
| 7 | 3, 6 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: cbvral3v 2753 fununi 5342 fiintim 7028 isoti 7109 nninfwlpoim 7281 cauappcvgprlemlim 7774 caucvgprlemnkj 7779 caucvgprlemcl 7789 caucvgprprlemcbv 7800 axcaucvglemcau 8011 axpre-suploc 8015 seqvalcd 10606 seqovcd 10612 seq3distr 10677 fprodcl2lem 11916 ennnfonelemr 12794 ctinf 12801 ercpbl 13163 grppropd 13349 |
| Copyright terms: Public domain | W3C validator |