ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral2v Unicode version

Theorem cbvral2v 2709
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
Hypotheses
Ref Expression
cbvral2v.1  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvral2v.2  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvral2v  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Distinct variable groups:    x, A    z, A    x, y, B    y,
z, B    w, B    ph, z    ps, y    ch, x    ch, w
Allowed substitution hints:    ph( x, y, w)    ps( x, z, w)    ch( y, z)    A( y, w)

Proof of Theorem cbvral2v
StepHypRef Expression
1 cbvral2v.1 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
21ralbidv 2470 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  ch ) )
32cbvralv 2696 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. y  e.  B  ch )
4 cbvral2v.2 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
54cbvralv 2696 . . 3  |-  ( A. y  e.  B  ch  <->  A. w  e.  B  ps )
65ralbii 2476 . 2  |-  ( A. z  e.  A  A. y  e.  B  ch  <->  A. z  e.  A  A. w  e.  B  ps )
73, 6bitri 183 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453
This theorem is referenced by:  cbvral3v  2711  fununi  5264  fiintim  6902  isoti  6980  cauappcvgprlemlim  7610  caucvgprlemnkj  7615  caucvgprlemcl  7625  caucvgprprlemcbv  7636  axcaucvglemcau  7847  axpre-suploc  7851  seqvalcd  10402  seqovcd  10406  seq3distr  10456  fprodcl2lem  11555  ennnfonelemr  12365  ctinf  12372  grppropd  12711
  Copyright terms: Public domain W3C validator