ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvral2v Unicode version

Theorem cbvral2v 2755
Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.)
Hypotheses
Ref Expression
cbvral2v.1  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
cbvral2v.2  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
Assertion
Ref Expression
cbvral2v  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Distinct variable groups:    x, A    z, A    x, y, B    y,
z, B    w, B    ph, z    ps, y    ch, x    ch, w
Allowed substitution hints:    ph( x, y, w)    ps( x, z, w)    ch( y, z)    A( y, w)

Proof of Theorem cbvral2v
StepHypRef Expression
1 cbvral2v.1 . . . 4  |-  ( x  =  z  ->  ( ph 
<->  ch ) )
21ralbidv 2508 . . 3  |-  ( x  =  z  ->  ( A. y  e.  B  ph  <->  A. y  e.  B  ch ) )
32cbvralv 2742 . 2  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. y  e.  B  ch )
4 cbvral2v.2 . . . 4  |-  ( y  =  w  ->  ( ch 
<->  ps ) )
54cbvralv 2742 . . 3  |-  ( A. y  e.  B  ch  <->  A. w  e.  B  ps )
65ralbii 2514 . 2  |-  ( A. z  e.  A  A. y  e.  B  ch  <->  A. z  e.  A  A. w  e.  B  ps )
73, 6bitri 184 1  |-  ( A. x  e.  A  A. y  e.  B  ph  <->  A. z  e.  A  A. w  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491
This theorem is referenced by:  cbvral3v  2757  fununi  5361  fiintim  7054  isoti  7135  nninfwlpoim  7307  cauappcvgprlemlim  7809  caucvgprlemnkj  7814  caucvgprlemcl  7824  caucvgprprlemcbv  7835  axcaucvglemcau  8046  axpre-suploc  8050  seqvalcd  10643  seqovcd  10649  seq3distr  10714  fprodcl2lem  12031  ennnfonelemr  12909  ctinf  12916  ercpbl  13278  grppropd  13464
  Copyright terms: Public domain W3C validator