| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvral2v | Unicode version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) |
| Ref | Expression |
|---|---|
| cbvral2v.1 |
|
| cbvral2v.2 |
|
| Ref | Expression |
|---|---|
| cbvral2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral2v.1 |
. . . 4
| |
| 2 | 1 | ralbidv 2497 |
. . 3
|
| 3 | 2 | cbvralv 2729 |
. 2
|
| 4 | cbvral2v.2 |
. . . 4
| |
| 5 | 4 | cbvralv 2729 |
. . 3
|
| 6 | 5 | ralbii 2503 |
. 2
|
| 7 | 3, 6 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 |
| This theorem is referenced by: cbvral3v 2744 fununi 5327 fiintim 7001 isoti 7082 nninfwlpoim 7253 cauappcvgprlemlim 7745 caucvgprlemnkj 7750 caucvgprlemcl 7760 caucvgprprlemcbv 7771 axcaucvglemcau 7982 axpre-suploc 7986 seqvalcd 10570 seqovcd 10576 seq3distr 10641 fprodcl2lem 11787 ennnfonelemr 12665 ctinf 12672 ercpbl 13033 grppropd 13219 |
| Copyright terms: Public domain | W3C validator |