| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > cbvral2v | Unicode version | ||
| Description: Change bound variables of double restricted universal quantification, using implicit substitution. (Contributed by NM, 10-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| cbvral2v.1 | 
 | 
| cbvral2v.2 | 
 | 
| Ref | Expression | 
|---|---|
| cbvral2v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cbvral2v.1 | 
. . . 4
 | |
| 2 | 1 | ralbidv 2497 | 
. . 3
 | 
| 3 | 2 | cbvralv 2729 | 
. 2
 | 
| 4 | cbvral2v.2 | 
. . . 4
 | |
| 5 | 4 | cbvralv 2729 | 
. . 3
 | 
| 6 | 5 | ralbii 2503 | 
. 2
 | 
| 7 | 3, 6 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 | 
| This theorem is referenced by: cbvral3v 2744 fununi 5326 fiintim 6992 isoti 7073 nninfwlpoim 7244 cauappcvgprlemlim 7728 caucvgprlemnkj 7733 caucvgprlemcl 7743 caucvgprprlemcbv 7754 axcaucvglemcau 7965 axpre-suploc 7969 seqvalcd 10553 seqovcd 10559 seq3distr 10624 fprodcl2lem 11770 ennnfonelemr 12640 ctinf 12647 ercpbl 12974 grppropd 13149 | 
| Copyright terms: Public domain | W3C validator |