ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 Unicode version

Theorem 2sqlem9 15803
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem9.6  |-  ( ph  ->  M  e.  NN )
2sqlem9.4  |-  ( ph  ->  N  e.  Y )
Assertion
Ref Expression
2sqlem9  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    ph, x, y    M, a, b, x, y, z    S, a, b, x, y, z   
x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem9
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3  |-  ( ph  ->  N  e.  Y )
2 eqeq1 2236 . . . . . . . 8  |-  ( z  =  N  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
32anbi2d 464 . . . . . . 7  |-  ( z  =  N  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
432rexbidv 2555 . . . . . 6  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5 oveq1 6008 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  gcd  y )  =  ( u  gcd  y ) )
65eqeq1d 2238 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  gcd  y
)  =  1  <->  (
u  gcd  y )  =  1 ) )
7 oveq1 6008 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x ^ 2 )  =  ( u ^
2 ) )
87oveq1d 6016 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )
98eqeq2d 2241 . . . . . . . 8  |-  ( x  =  u  ->  ( N  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) )
106, 9anbi12d 473 . . . . . . 7  |-  ( x  =  u  ->  (
( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) ) )
11 oveq2 6009 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  gcd  y )  =  ( u  gcd  v ) )
1211eqeq1d 2238 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  gcd  y
)  =  1  <->  (
u  gcd  v )  =  1 ) )
13 oveq1 6008 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y ^ 2 )  =  ( v ^
2 ) )
1413oveq2d 6017 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
1514eqeq2d 2241 . . . . . . . 8  |-  ( y  =  v  ->  ( N  =  ( (
u ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
1612, 15anbi12d 473 . . . . . . 7  |-  ( y  =  v  ->  (
( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
1710, 16cbvrex2vw 2777 . . . . . 6  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
184, 17bitrdi 196 . . . . 5  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) ) )
19 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2018, 19elab2g 2950 . . . 4  |-  ( N  e.  Y  ->  ( N  e.  Y  <->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
2120ibi 176 . . 3  |-  ( N  e.  Y  ->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
221, 21syl 14 . 2  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  = 
1 )
24 1z 9472 . . . . . . . . 9  |-  1  e.  ZZ
25 zgz 12896 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2624, 25ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
27 sq1 10855 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827eqcomi 2233 . . . . . . . 8  |-  1  =  ( 1 ^ 2 )
29 fveq2 5627 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
30 abs1 11583 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
3129, 30eqtrdi 2278 . . . . . . . . . 10  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
3231oveq1d 6016 . . . . . . . . 9  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
3332rspceeqv 2925 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
3426, 28, 33mp2an 426 . . . . . . 7  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
35 2sq.1 . . . . . . . 8  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
36352sqlem1 15793 . . . . . . 7  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
3734, 36mpbir 146 . . . . . 6  |-  1  e.  S
3823, 37eqeltrdi 2320 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  e.  S )
39 2sqlem9.5 . . . . . . . 8  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
4039ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
41 2sqlem9.7 . . . . . . . 8  |-  ( ph  ->  M  ||  N )
4241ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  ||  N )
4335, 192sqlem7 15800 . . . . . . . . . 10  |-  Y  C_  ( S  i^i  NN )
44 inss2 3425 . . . . . . . . . 10  |-  ( S  i^i  NN )  C_  NN
4543, 44sstri 3233 . . . . . . . . 9  |-  Y  C_  NN
4645, 1sselid 3222 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4746ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  e.  NN )
48 2sqlem9.6 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4948ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  NN )
50 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  =/=  1 )
51 eluz2b3 9799 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
5249, 50, 51sylanbrc 417 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  ( ZZ>= `  2 )
)
53 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  u  e.  ZZ )
54 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  v  e.  ZZ )
55 simprll 537 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  (
u  gcd  v )  =  1 )
56 simprlr 538 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
57 eqid 2229 . . . . . . 7  |-  ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
58 eqid 2229 . . . . . . 7  |-  ( ( ( v  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
59 eqid 2229 . . . . . . 7  |-  ( ( ( ( u  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
60 eqid 2229 . . . . . . 7  |-  ( ( ( ( v  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 15802 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  S )
6261anassrs 400 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =/=  1
)  ->  M  e.  S )
6348nnzd 9568 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
6463ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  ZZ )
65 zdceq 9522 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  1  e.  ZZ )  -> DECID  M  =  1 )
6664, 24, 65sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  -> DECID 
M  =  1 )
67 dcne 2411 . . . . . 6  |-  (DECID  M  =  1  <->  ( M  =  1  \/  M  =/=  1 ) )
6866, 67sylib 122 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  ( M  =  1  \/  M  =/=  1 ) )
6938, 62, 68mpjaodan 803 . . . 4  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  S
)
7069ex 115 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7170rexlimdvva 2656 . 2  |-  ( ph  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7222, 71mpd 13 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   {cab 2215    =/= wne 2400   A.wral 2508   E.wrex 2509    i^i cin 3196   class class class wbr 4083    |-> cmpt 4145   ran crn 4720   ` cfv 5318  (class class class)co 6001   1c1 8000    + caddc 8002    - cmin 8317    / cdiv 8819   NNcn 9110   2c2 9161   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204    mod cmo 10544   ^cexp 10760   abscabs 11508    || cdvds 12298    gcd cgcd 12474   ZZ[_i]cgz 12892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-gz 12893
This theorem is referenced by:  2sqlem10  15804
  Copyright terms: Public domain W3C validator