ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 Unicode version

Theorem 2sqlem9 15634
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem9.6  |-  ( ph  ->  M  e.  NN )
2sqlem9.4  |-  ( ph  ->  N  e.  Y )
Assertion
Ref Expression
2sqlem9  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    ph, x, y    M, a, b, x, y, z    S, a, b, x, y, z   
x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem9
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3  |-  ( ph  ->  N  e.  Y )
2 eqeq1 2212 . . . . . . . 8  |-  ( z  =  N  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
32anbi2d 464 . . . . . . 7  |-  ( z  =  N  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
432rexbidv 2531 . . . . . 6  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5 oveq1 5953 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  gcd  y )  =  ( u  gcd  y ) )
65eqeq1d 2214 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  gcd  y
)  =  1  <->  (
u  gcd  y )  =  1 ) )
7 oveq1 5953 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x ^ 2 )  =  ( u ^
2 ) )
87oveq1d 5961 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )
98eqeq2d 2217 . . . . . . . 8  |-  ( x  =  u  ->  ( N  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) )
106, 9anbi12d 473 . . . . . . 7  |-  ( x  =  u  ->  (
( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) ) )
11 oveq2 5954 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  gcd  y )  =  ( u  gcd  v ) )
1211eqeq1d 2214 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  gcd  y
)  =  1  <->  (
u  gcd  v )  =  1 ) )
13 oveq1 5953 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y ^ 2 )  =  ( v ^
2 ) )
1413oveq2d 5962 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
1514eqeq2d 2217 . . . . . . . 8  |-  ( y  =  v  ->  ( N  =  ( (
u ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
1612, 15anbi12d 473 . . . . . . 7  |-  ( y  =  v  ->  (
( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
1710, 16cbvrex2vw 2750 . . . . . 6  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
184, 17bitrdi 196 . . . . 5  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) ) )
19 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2018, 19elab2g 2920 . . . 4  |-  ( N  e.  Y  ->  ( N  e.  Y  <->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
2120ibi 176 . . 3  |-  ( N  e.  Y  ->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
221, 21syl 14 . 2  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  = 
1 )
24 1z 9400 . . . . . . . . 9  |-  1  e.  ZZ
25 zgz 12729 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2624, 25ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
27 sq1 10780 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827eqcomi 2209 . . . . . . . 8  |-  1  =  ( 1 ^ 2 )
29 fveq2 5578 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
30 abs1 11416 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
3129, 30eqtrdi 2254 . . . . . . . . . 10  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
3231oveq1d 5961 . . . . . . . . 9  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
3332rspceeqv 2895 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
3426, 28, 33mp2an 426 . . . . . . 7  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
35 2sq.1 . . . . . . . 8  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
36352sqlem1 15624 . . . . . . 7  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
3734, 36mpbir 146 . . . . . 6  |-  1  e.  S
3823, 37eqeltrdi 2296 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  e.  S )
39 2sqlem9.5 . . . . . . . 8  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
4039ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
41 2sqlem9.7 . . . . . . . 8  |-  ( ph  ->  M  ||  N )
4241ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  ||  N )
4335, 192sqlem7 15631 . . . . . . . . . 10  |-  Y  C_  ( S  i^i  NN )
44 inss2 3394 . . . . . . . . . 10  |-  ( S  i^i  NN )  C_  NN
4543, 44sstri 3202 . . . . . . . . 9  |-  Y  C_  NN
4645, 1sselid 3191 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4746ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  e.  NN )
48 2sqlem9.6 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4948ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  NN )
50 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  =/=  1 )
51 eluz2b3 9727 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
5249, 50, 51sylanbrc 417 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  ( ZZ>= `  2 )
)
53 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  u  e.  ZZ )
54 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  v  e.  ZZ )
55 simprll 537 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  (
u  gcd  v )  =  1 )
56 simprlr 538 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
57 eqid 2205 . . . . . . 7  |-  ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
58 eqid 2205 . . . . . . 7  |-  ( ( ( v  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
59 eqid 2205 . . . . . . 7  |-  ( ( ( ( u  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
60 eqid 2205 . . . . . . 7  |-  ( ( ( ( v  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 15633 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  S )
6261anassrs 400 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =/=  1
)  ->  M  e.  S )
6348nnzd 9496 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
6463ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  ZZ )
65 zdceq 9450 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  1  e.  ZZ )  -> DECID  M  =  1 )
6664, 24, 65sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  -> DECID 
M  =  1 )
67 dcne 2387 . . . . . 6  |-  (DECID  M  =  1  <->  ( M  =  1  \/  M  =/=  1 ) )
6866, 67sylib 122 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  ( M  =  1  \/  M  =/=  1 ) )
6938, 62, 68mpjaodan 800 . . . 4  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  S
)
7069ex 115 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7170rexlimdvva 2631 . 2  |-  ( ph  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7222, 71mpd 13 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710  DECID wdc 836    = wceq 1373    e. wcel 2176   {cab 2191    =/= wne 2376   A.wral 2484   E.wrex 2485    i^i cin 3165   class class class wbr 4045    |-> cmpt 4106   ran crn 4677   ` cfv 5272  (class class class)co 5946   1c1 7928    + caddc 7930    - cmin 8245    / cdiv 8747   NNcn 9038   2c2 9089   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132    mod cmo 10469   ^cexp 10685   abscabs 11341    || cdvds 12131    gcd cgcd 12307   ZZ[_i]cgz 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463  df-gz 12726
This theorem is referenced by:  2sqlem10  15635
  Copyright terms: Public domain W3C validator