ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 Unicode version

Theorem 2sqlem9 14949
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem9.6  |-  ( ph  ->  M  e.  NN )
2sqlem9.4  |-  ( ph  ->  N  e.  Y )
Assertion
Ref Expression
2sqlem9  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    ph, x, y    M, a, b, x, y, z    S, a, b, x, y, z   
x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem9
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3  |-  ( ph  ->  N  e.  Y )
2 eqeq1 2196 . . . . . . . 8  |-  ( z  =  N  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
32anbi2d 464 . . . . . . 7  |-  ( z  =  N  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
432rexbidv 2515 . . . . . 6  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5 oveq1 5904 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  gcd  y )  =  ( u  gcd  y ) )
65eqeq1d 2198 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  gcd  y
)  =  1  <->  (
u  gcd  y )  =  1 ) )
7 oveq1 5904 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x ^ 2 )  =  ( u ^
2 ) )
87oveq1d 5912 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )
98eqeq2d 2201 . . . . . . . 8  |-  ( x  =  u  ->  ( N  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) )
106, 9anbi12d 473 . . . . . . 7  |-  ( x  =  u  ->  (
( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) ) )
11 oveq2 5905 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  gcd  y )  =  ( u  gcd  v ) )
1211eqeq1d 2198 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  gcd  y
)  =  1  <->  (
u  gcd  v )  =  1 ) )
13 oveq1 5904 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y ^ 2 )  =  ( v ^
2 ) )
1413oveq2d 5913 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
1514eqeq2d 2201 . . . . . . . 8  |-  ( y  =  v  ->  ( N  =  ( (
u ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
1612, 15anbi12d 473 . . . . . . 7  |-  ( y  =  v  ->  (
( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
1710, 16cbvrex2vw 2730 . . . . . 6  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
184, 17bitrdi 196 . . . . 5  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) ) )
19 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2018, 19elab2g 2899 . . . 4  |-  ( N  e.  Y  ->  ( N  e.  Y  <->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
2120ibi 176 . . 3  |-  ( N  e.  Y  ->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
221, 21syl 14 . 2  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  = 
1 )
24 1z 9310 . . . . . . . . 9  |-  1  e.  ZZ
25 zgz 12408 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2624, 25ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
27 sq1 10648 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827eqcomi 2193 . . . . . . . 8  |-  1  =  ( 1 ^ 2 )
29 fveq2 5534 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
30 abs1 11116 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
3129, 30eqtrdi 2238 . . . . . . . . . 10  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
3231oveq1d 5912 . . . . . . . . 9  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
3332rspceeqv 2874 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
3426, 28, 33mp2an 426 . . . . . . 7  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
35 2sq.1 . . . . . . . 8  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
36352sqlem1 14939 . . . . . . 7  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
3734, 36mpbir 146 . . . . . 6  |-  1  e.  S
3823, 37eqeltrdi 2280 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  e.  S )
39 2sqlem9.5 . . . . . . . 8  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
4039ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
41 2sqlem9.7 . . . . . . . 8  |-  ( ph  ->  M  ||  N )
4241ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  ||  N )
4335, 192sqlem7 14946 . . . . . . . . . 10  |-  Y  C_  ( S  i^i  NN )
44 inss2 3371 . . . . . . . . . 10  |-  ( S  i^i  NN )  C_  NN
4543, 44sstri 3179 . . . . . . . . 9  |-  Y  C_  NN
4645, 1sselid 3168 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4746ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  e.  NN )
48 2sqlem9.6 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4948ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  NN )
50 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  =/=  1 )
51 eluz2b3 9636 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
5249, 50, 51sylanbrc 417 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  ( ZZ>= `  2 )
)
53 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  u  e.  ZZ )
54 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  v  e.  ZZ )
55 simprll 537 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  (
u  gcd  v )  =  1 )
56 simprlr 538 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
57 eqid 2189 . . . . . . 7  |-  ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
58 eqid 2189 . . . . . . 7  |-  ( ( ( v  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
59 eqid 2189 . . . . . . 7  |-  ( ( ( ( u  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
60 eqid 2189 . . . . . . 7  |-  ( ( ( ( v  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 14948 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  S )
6261anassrs 400 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =/=  1
)  ->  M  e.  S )
6348nnzd 9405 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
6463ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  ZZ )
65 zdceq 9359 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  1  e.  ZZ )  -> DECID  M  =  1 )
6664, 24, 65sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  -> DECID 
M  =  1 )
67 dcne 2371 . . . . . 6  |-  (DECID  M  =  1  <->  ( M  =  1  \/  M  =/=  1 ) )
6866, 67sylib 122 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  ( M  =  1  \/  M  =/=  1 ) )
6938, 62, 68mpjaodan 799 . . . 4  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  S
)
7069ex 115 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7170rexlimdvva 2615 . 2  |-  ( ph  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7222, 71mpd 13 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2160   {cab 2175    =/= wne 2360   A.wral 2468   E.wrex 2469    i^i cin 3143   class class class wbr 4018    |-> cmpt 4079   ran crn 4645   ` cfv 5235  (class class class)co 5897   1c1 7843    + caddc 7845    - cmin 8159    / cdiv 8660   NNcn 8950   2c2 9001   ZZcz 9284   ZZ>=cuz 9559   ...cfz 10040    mod cmo 10355   ^cexp 10553   abscabs 11041    || cdvds 11829    gcd cgcd 11978   ZZ[_i]cgz 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960  ax-arch 7961  ax-caucvg 7962
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-recs 6331  df-frec 6417  df-1o 6442  df-2o 6443  df-er 6560  df-en 6768  df-sup 7014  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-3 9010  df-4 9011  df-n0 9208  df-z 9285  df-uz 9560  df-q 9652  df-rp 9686  df-fz 10041  df-fzo 10175  df-fl 10303  df-mod 10356  df-seqfrec 10479  df-exp 10554  df-cj 10886  df-re 10887  df-im 10888  df-rsqrt 11042  df-abs 11043  df-dvds 11830  df-gcd 11979  df-prm 12143  df-gz 12405
This theorem is referenced by:  2sqlem10  14950
  Copyright terms: Public domain W3C validator