ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 Unicode version

Theorem 2sqlem9 15281
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem9.6  |-  ( ph  ->  M  e.  NN )
2sqlem9.4  |-  ( ph  ->  N  e.  Y )
Assertion
Ref Expression
2sqlem9  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    ph, x, y    M, a, b, x, y, z    S, a, b, x, y, z   
x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem9
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3  |-  ( ph  ->  N  e.  Y )
2 eqeq1 2200 . . . . . . . 8  |-  ( z  =  N  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
32anbi2d 464 . . . . . . 7  |-  ( z  =  N  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
432rexbidv 2519 . . . . . 6  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5 oveq1 5926 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  gcd  y )  =  ( u  gcd  y ) )
65eqeq1d 2202 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  gcd  y
)  =  1  <->  (
u  gcd  y )  =  1 ) )
7 oveq1 5926 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x ^ 2 )  =  ( u ^
2 ) )
87oveq1d 5934 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )
98eqeq2d 2205 . . . . . . . 8  |-  ( x  =  u  ->  ( N  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) )
106, 9anbi12d 473 . . . . . . 7  |-  ( x  =  u  ->  (
( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) ) )
11 oveq2 5927 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  gcd  y )  =  ( u  gcd  v ) )
1211eqeq1d 2202 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  gcd  y
)  =  1  <->  (
u  gcd  v )  =  1 ) )
13 oveq1 5926 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y ^ 2 )  =  ( v ^
2 ) )
1413oveq2d 5935 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
1514eqeq2d 2205 . . . . . . . 8  |-  ( y  =  v  ->  ( N  =  ( (
u ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
1612, 15anbi12d 473 . . . . . . 7  |-  ( y  =  v  ->  (
( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
1710, 16cbvrex2vw 2738 . . . . . 6  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
184, 17bitrdi 196 . . . . 5  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) ) )
19 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2018, 19elab2g 2908 . . . 4  |-  ( N  e.  Y  ->  ( N  e.  Y  <->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
2120ibi 176 . . 3  |-  ( N  e.  Y  ->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
221, 21syl 14 . 2  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  = 
1 )
24 1z 9346 . . . . . . . . 9  |-  1  e.  ZZ
25 zgz 12514 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2624, 25ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
27 sq1 10707 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827eqcomi 2197 . . . . . . . 8  |-  1  =  ( 1 ^ 2 )
29 fveq2 5555 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
30 abs1 11219 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
3129, 30eqtrdi 2242 . . . . . . . . . 10  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
3231oveq1d 5934 . . . . . . . . 9  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
3332rspceeqv 2883 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
3426, 28, 33mp2an 426 . . . . . . 7  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
35 2sq.1 . . . . . . . 8  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
36352sqlem1 15271 . . . . . . 7  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
3734, 36mpbir 146 . . . . . 6  |-  1  e.  S
3823, 37eqeltrdi 2284 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  e.  S )
39 2sqlem9.5 . . . . . . . 8  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
4039ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
41 2sqlem9.7 . . . . . . . 8  |-  ( ph  ->  M  ||  N )
4241ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  ||  N )
4335, 192sqlem7 15278 . . . . . . . . . 10  |-  Y  C_  ( S  i^i  NN )
44 inss2 3381 . . . . . . . . . 10  |-  ( S  i^i  NN )  C_  NN
4543, 44sstri 3189 . . . . . . . . 9  |-  Y  C_  NN
4645, 1sselid 3178 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4746ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  e.  NN )
48 2sqlem9.6 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4948ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  NN )
50 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  =/=  1 )
51 eluz2b3 9672 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
5249, 50, 51sylanbrc 417 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  ( ZZ>= `  2 )
)
53 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  u  e.  ZZ )
54 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  v  e.  ZZ )
55 simprll 537 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  (
u  gcd  v )  =  1 )
56 simprlr 538 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
57 eqid 2193 . . . . . . 7  |-  ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
58 eqid 2193 . . . . . . 7  |-  ( ( ( v  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
59 eqid 2193 . . . . . . 7  |-  ( ( ( ( u  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
60 eqid 2193 . . . . . . 7  |-  ( ( ( ( v  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 15280 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  S )
6261anassrs 400 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =/=  1
)  ->  M  e.  S )
6348nnzd 9441 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
6463ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  ZZ )
65 zdceq 9395 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  1  e.  ZZ )  -> DECID  M  =  1 )
6664, 24, 65sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  -> DECID 
M  =  1 )
67 dcne 2375 . . . . . 6  |-  (DECID  M  =  1  <->  ( M  =  1  \/  M  =/=  1 ) )
6866, 67sylib 122 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  ( M  =  1  \/  M  =/=  1 ) )
6938, 62, 68mpjaodan 799 . . . 4  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  S
)
7069ex 115 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7170rexlimdvva 2619 . 2  |-  ( ph  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7222, 71mpd 13 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164   {cab 2179    =/= wne 2364   A.wral 2472   E.wrex 2473    i^i cin 3153   class class class wbr 4030    |-> cmpt 4091   ran crn 4661   ` cfv 5255  (class class class)co 5919   1c1 7875    + caddc 7877    - cmin 8192    / cdiv 8693   NNcn 8984   2c2 9035   ZZcz 9320   ZZ>=cuz 9595   ...cfz 10077    mod cmo 10396   ^cexp 10612   abscabs 11144    || cdvds 11933    gcd cgcd 12082   ZZ[_i]cgz 12510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-sup 7045  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-prm 12249  df-gz 12511
This theorem is referenced by:  2sqlem10  15282
  Copyright terms: Public domain W3C validator