ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2sqlem9 Unicode version

Theorem 2sqlem9 14127
Description: Lemma for 2sq . (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
2sq.1  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
2sqlem7.2  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2sqlem9.5  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
2sqlem9.7  |-  ( ph  ->  M  ||  N )
2sqlem9.6  |-  ( ph  ->  M  e.  NN )
2sqlem9.4  |-  ( ph  ->  N  e.  Y )
Assertion
Ref Expression
2sqlem9  |-  ( ph  ->  M  e.  S )
Distinct variable groups:    a, b, w, x, y, z    ph, x, y    M, a, b, x, y, z    S, a, b, x, y, z   
x, N, y, z    Y, a, b, x, y
Allowed substitution hints:    ph( z, w, a, b)    S( w)    M( w)    N( w, a, b)    Y( z, w)

Proof of Theorem 2sqlem9
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2sqlem9.4 . . 3  |-  ( ph  ->  N  e.  Y )
2 eqeq1 2184 . . . . . . . 8  |-  ( z  =  N  ->  (
z  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
32anbi2d 464 . . . . . . 7  |-  ( z  =  N  ->  (
( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) ) )
432rexbidv 2502 . . . . . 6  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5 oveq1 5876 . . . . . . . . 9  |-  ( x  =  u  ->  (
x  gcd  y )  =  ( u  gcd  y ) )
65eqeq1d 2186 . . . . . . . 8  |-  ( x  =  u  ->  (
( x  gcd  y
)  =  1  <->  (
u  gcd  y )  =  1 ) )
7 oveq1 5876 . . . . . . . . . 10  |-  ( x  =  u  ->  (
x ^ 2 )  =  ( u ^
2 ) )
87oveq1d 5884 . . . . . . . . 9  |-  ( x  =  u  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )
98eqeq2d 2189 . . . . . . . 8  |-  ( x  =  u  ->  ( N  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) )
106, 9anbi12d 473 . . . . . . 7  |-  ( x  =  u  ->  (
( ( x  gcd  y )  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^
2 )  +  ( y ^ 2 ) ) ) ) )
11 oveq2 5877 . . . . . . . . 9  |-  ( y  =  v  ->  (
u  gcd  y )  =  ( u  gcd  v ) )
1211eqeq1d 2186 . . . . . . . 8  |-  ( y  =  v  ->  (
( u  gcd  y
)  =  1  <->  (
u  gcd  v )  =  1 ) )
13 oveq1 5876 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y ^ 2 )  =  ( v ^
2 ) )
1413oveq2d 5885 . . . . . . . . 9  |-  ( y  =  v  ->  (
( u ^ 2 )  +  ( y ^ 2 ) )  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
1514eqeq2d 2189 . . . . . . . 8  |-  ( y  =  v  ->  ( N  =  ( (
u ^ 2 )  +  ( y ^
2 ) )  <->  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
1612, 15anbi12d 473 . . . . . . 7  |-  ( y  =  v  ->  (
( ( u  gcd  y )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
1710, 16cbvrex2vw 2715 . . . . . 6  |-  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  N  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
184, 17bitrdi 196 . . . . 5  |-  ( z  =  N  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  (
( x  gcd  y
)  =  1  /\  z  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )  <->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) ) )
19 2sqlem7.2 . . . . 5  |-  Y  =  { z  |  E. x  e.  ZZ  E. y  e.  ZZ  ( ( x  gcd  y )  =  1  /\  z  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) }
2018, 19elab2g 2884 . . . 4  |-  ( N  e.  Y  ->  ( N  e.  Y  <->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) ) )
2120ibi 176 . . 3  |-  ( N  e.  Y  ->  E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) ) )
221, 21syl 14 . 2  |-  ( ph  ->  E. u  e.  ZZ  E. v  e.  ZZ  (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) ) )
23 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  = 
1 )
24 1z 9268 . . . . . . . . 9  |-  1  e.  ZZ
25 zgz 12354 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  1  e.  ZZ[_i]
)
2624, 25ax-mp 5 . . . . . . . 8  |-  1  e.  ZZ[_i]
27 sq1 10599 . . . . . . . . 9  |-  ( 1 ^ 2 )  =  1
2827eqcomi 2181 . . . . . . . 8  |-  1  =  ( 1 ^ 2 )
29 fveq2 5511 . . . . . . . . . . 11  |-  ( x  =  1  ->  ( abs `  x )  =  ( abs `  1
) )
30 abs1 11065 . . . . . . . . . . 11  |-  ( abs `  1 )  =  1
3129, 30eqtrdi 2226 . . . . . . . . . 10  |-  ( x  =  1  ->  ( abs `  x )  =  1 )
3231oveq1d 5884 . . . . . . . . 9  |-  ( x  =  1  ->  (
( abs `  x
) ^ 2 )  =  ( 1 ^ 2 ) )
3332rspceeqv 2859 . . . . . . . 8  |-  ( ( 1  e.  ZZ[_i]  /\  1  =  ( 1 ^ 2 ) )  ->  E. x  e.  ZZ[_i]  1  =  ( ( abs `  x ) ^ 2 ) )
3426, 28, 33mp2an 426 . . . . . . 7  |-  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 )
35 2sq.1 . . . . . . . 8  |-  S  =  ran  ( w  e.  ZZ[_i]  |->  ( ( abs `  w
) ^ 2 ) )
36352sqlem1 14117 . . . . . . 7  |-  ( 1  e.  S  <->  E. x  e.  ZZ[_i] 
1  =  ( ( abs `  x ) ^ 2 ) )
3734, 36mpbir 146 . . . . . 6  |-  1  e.  S
3823, 37eqeltrdi 2268 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =  1 )  ->  M  e.  S )
39 2sqlem9.5 . . . . . . . 8  |-  ( ph  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S ) )
4039ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  A. b  e.  ( 1 ... ( M  -  1 ) ) A. a  e.  Y  ( b  ||  a  ->  b  e.  S
) )
41 2sqlem9.7 . . . . . . . 8  |-  ( ph  ->  M  ||  N )
4241ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  ||  N )
4335, 192sqlem7 14124 . . . . . . . . . 10  |-  Y  C_  ( S  i^i  NN )
44 inss2 3356 . . . . . . . . . 10  |-  ( S  i^i  NN )  C_  NN
4543, 44sstri 3164 . . . . . . . . 9  |-  Y  C_  NN
4645, 1sselid 3153 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
4746ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  e.  NN )
48 2sqlem9.6 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
4948ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  NN )
50 simprr 531 . . . . . . . 8  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  =/=  1 )
51 eluz2b3 9593 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  2
)  <->  ( M  e.  NN  /\  M  =/=  1 ) )
5249, 50, 51sylanbrc 417 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  ( ZZ>= `  2 )
)
53 simplrl 535 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  u  e.  ZZ )
54 simplrr 536 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  v  e.  ZZ )
55 simprll 537 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  (
u  gcd  v )  =  1 )
56 simprlr 538 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) )
57 eqid 2177 . . . . . . 7  |-  ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
58 eqid 2177 . . . . . . 7  |-  ( ( ( v  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  =  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )
59 eqid 2177 . . . . . . 7  |-  ( ( ( ( u  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( u  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
60 eqid 2177 . . . . . . 7  |-  ( ( ( ( v  +  ( M  /  2
) )  mod  M
)  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )  =  ( ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) )  /  ( ( ( ( u  +  ( M  /  2 ) )  mod  M )  -  ( M  / 
2 ) )  gcd  ( ( ( v  +  ( M  / 
2 ) )  mod 
M )  -  ( M  /  2 ) ) ) )
6135, 19, 40, 42, 47, 52, 53, 54, 55, 56, 57, 58, 59, 602sqlem8 14126 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
( u  gcd  v
)  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^
2 ) ) )  /\  M  =/=  1
) )  ->  M  e.  S )
6261anassrs 400 . . . . 5  |-  ( ( ( ( ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  /\  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  /\  M  =/=  1
)  ->  M  e.  S )
6348nnzd 9363 . . . . . . . 8  |-  ( ph  ->  M  e.  ZZ )
6463ad2antrr 488 . . . . . . 7  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  ZZ )
65 zdceq 9317 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  1  e.  ZZ )  -> DECID  M  =  1 )
6664, 24, 65sylancl 413 . . . . . 6  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  -> DECID 
M  =  1 )
67 dcne 2358 . . . . . 6  |-  (DECID  M  =  1  <->  ( M  =  1  \/  M  =/=  1 ) )
6866, 67sylib 122 . . . . 5  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  ( M  =  1  \/  M  =/=  1 ) )
6938, 62, 68mpjaodan 798 . . . 4  |-  ( ( ( ph  /\  (
u  e.  ZZ  /\  v  e.  ZZ )
)  /\  ( (
u  gcd  v )  =  1  /\  N  =  ( ( u ^ 2 )  +  ( v ^ 2 ) ) ) )  ->  M  e.  S
)
7069ex 115 . . 3  |-  ( (
ph  /\  ( u  e.  ZZ  /\  v  e.  ZZ ) )  -> 
( ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7170rexlimdvva 2602 . 2  |-  ( ph  ->  ( E. u  e.  ZZ  E. v  e.  ZZ  ( ( u  gcd  v )  =  1  /\  N  =  ( ( u ^
2 )  +  ( v ^ 2 ) ) )  ->  M  e.  S ) )
7222, 71mpd 13 1  |-  ( ph  ->  M  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   {cab 2163    =/= wne 2347   A.wral 2455   E.wrex 2456    i^i cin 3128   class class class wbr 4000    |-> cmpt 4061   ran crn 4624   ` cfv 5212  (class class class)co 5869   1c1 7803    + caddc 7805    - cmin 8118    / cdiv 8618   NNcn 8908   2c2 8959   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995    mod cmo 10308   ^cexp 10505   abscabs 10990    || cdvds 11778    gcd cgcd 11926   ZZ[_i]cgz 12350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-gz 12351
This theorem is referenced by:  2sqlem10  14128
  Copyright terms: Public domain W3C validator