| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem3a | Unicode version | ||
| Description: Lemma for transfinite
recursion. Let |
| Ref | Expression |
|---|---|
| tfrlem3.1 |
|
| tfrlem3.2 |
|
| Ref | Expression |
|---|---|
| tfrlem3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.2 |
. 2
| |
| 2 | fneq12 5414 |
. . . 4
| |
| 3 | simpll 527 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 3, 4 | fveq12d 5634 |
. . . . . 6
|
| 6 | 3, 4 | reseq12d 5006 |
. . . . . . 7
|
| 7 | 6 | fveq2d 5631 |
. . . . . 6
|
| 8 | 5, 7 | eqeq12d 2244 |
. . . . 5
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 8, 10 | cbvraldva2 2772 |
. . . 4
|
| 12 | 2, 11 | anbi12d 473 |
. . 3
|
| 13 | 12 | cbvrexdva 2775 |
. 2
|
| 14 | tfrlem3.1 |
. 2
| |
| 15 | 1, 13, 14 | elab2 2951 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: tfrlem3 6457 tfrlem5 6460 tfrlemisucaccv 6471 tfrlemibxssdm 6473 tfrlemi14d 6479 tfrexlem 6480 |
| Copyright terms: Public domain | W3C validator |