| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tfrlem3a | Unicode version | ||
| Description: Lemma for transfinite
recursion.  Let  | 
| Ref | Expression | 
|---|---|
| tfrlem3.1 | 
 | 
| tfrlem3.2 | 
 | 
| Ref | Expression | 
|---|---|
| tfrlem3a | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | tfrlem3.2 | 
. 2
 | |
| 2 | fneq12 5351 | 
. . . 4
 | |
| 3 | simpll 527 | 
. . . . . . 7
 | |
| 4 | simpr 110 | 
. . . . . . 7
 | |
| 5 | 3, 4 | fveq12d 5565 | 
. . . . . 6
 | 
| 6 | 3, 4 | reseq12d 4947 | 
. . . . . . 7
 | 
| 7 | 6 | fveq2d 5562 | 
. . . . . 6
 | 
| 8 | 5, 7 | eqeq12d 2211 | 
. . . . 5
 | 
| 9 | simpr 110 | 
. . . . . 6
 | |
| 10 | 9 | adantr 276 | 
. . . . 5
 | 
| 11 | 8, 10 | cbvraldva2 2736 | 
. . . 4
 | 
| 12 | 2, 11 | anbi12d 473 | 
. . 3
 | 
| 13 | 12 | cbvrexdva 2739 | 
. 2
 | 
| 14 | tfrlem3.1 | 
. 2
 | |
| 15 | 1, 13, 14 | elab2 2912 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 | 
| This theorem is referenced by: tfrlem3 6369 tfrlem5 6372 tfrlemisucaccv 6383 tfrlemibxssdm 6385 tfrlemi14d 6391 tfrexlem 6392 | 
| Copyright terms: Public domain | W3C validator |