| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem3a | Unicode version | ||
| Description: Lemma for transfinite
recursion. Let |
| Ref | Expression |
|---|---|
| tfrlem3.1 |
|
| tfrlem3.2 |
|
| Ref | Expression |
|---|---|
| tfrlem3a |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem3.2 |
. 2
| |
| 2 | fneq12 5386 |
. . . 4
| |
| 3 | simpll 527 |
. . . . . . 7
| |
| 4 | simpr 110 |
. . . . . . 7
| |
| 5 | 3, 4 | fveq12d 5606 |
. . . . . 6
|
| 6 | 3, 4 | reseq12d 4979 |
. . . . . . 7
|
| 7 | 6 | fveq2d 5603 |
. . . . . 6
|
| 8 | 5, 7 | eqeq12d 2222 |
. . . . 5
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 9 | adantr 276 |
. . . . 5
|
| 11 | 8, 10 | cbvraldva2 2749 |
. . . 4
|
| 12 | 2, 11 | anbi12d 473 |
. . 3
|
| 13 | 12 | cbvrexdva 2752 |
. 2
|
| 14 | tfrlem3.1 |
. 2
| |
| 15 | 1, 13, 14 | elab2 2928 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: tfrlem3 6420 tfrlem5 6423 tfrlemisucaccv 6434 tfrlemibxssdm 6436 tfrlemi14d 6442 tfrexlem 6443 |
| Copyright terms: Public domain | W3C validator |