ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag Unicode version

Theorem tfr1onlem3ag 6340
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3ag 6312 but for tfr1on 6353 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3ag  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Distinct variable groups:    f, G, w, x, y, z    f, H, w, x, y, z   
f, X, x, z
Allowed substitution hints:    A( x, y, z, w, f)    V( x, y, z, w, f)    X( y, w)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5311 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( f  Fn  x  <->  H  Fn  z ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  f  =  H )
3 simpr 110 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
42, 3fveq12d 5524 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( H `  w ) )
52, 3reseq12d 4910 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( H  |`  w
) )
65fveq2d 5521 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  ( G `  ( f  |`  y ) )  =  ( G `  ( H  |`  w ) ) )
74, 6eqeq12d 2192 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( G `
 ( f  |`  y ) )  <->  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
8 simplr 528 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
97, 8cbvraldva2 2712 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
101, 9anbi12d 473 . . 3  |-  ( ( f  =  H  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <-> 
( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
1110cbvrexdva 2715 . 2  |-  ( f  =  H  ->  ( E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) )  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
12 tfr1onlem3ag.1 . 2  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
1311, 12elab2g 2886 1  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456    |` cres 4630    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  tfr1onlem3  6341  tfr1onlemsucaccv  6344  tfr1onlembxssdm  6346  tfr1onlemres  6352
  Copyright terms: Public domain W3C validator