Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfr1onlem3ag | Unicode version |
Description: Lemma for transfinite recursion. This lemma changes some bound variables in (version of tfrlem3ag 6277 but for tfr1on 6318 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.) |
Ref | Expression |
---|---|
tfr1onlem3ag.1 |
Ref | Expression |
---|---|
tfr1onlem3ag |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq12 5281 | . . . 4 | |
2 | simpll 519 | . . . . . . 7 | |
3 | simpr 109 | . . . . . . 7 | |
4 | 2, 3 | fveq12d 5493 | . . . . . 6 |
5 | 2, 3 | reseq12d 4885 | . . . . . . 7 |
6 | 5 | fveq2d 5490 | . . . . . 6 |
7 | 4, 6 | eqeq12d 2180 | . . . . 5 |
8 | simplr 520 | . . . . 5 | |
9 | 7, 8 | cbvraldva2 2699 | . . . 4 |
10 | 1, 9 | anbi12d 465 | . . 3 |
11 | 10 | cbvrexdva 2702 | . 2 |
12 | tfr1onlem3ag.1 | . 2 | |
13 | 11, 12 | elab2g 2873 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cres 4606 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 |
This theorem is referenced by: tfr1onlem3 6306 tfr1onlemsucaccv 6309 tfr1onlembxssdm 6311 tfr1onlemres 6317 |
Copyright terms: Public domain | W3C validator |