ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag Unicode version

Theorem tfr1onlem3ag 6390
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3ag 6362 but for tfr1on 6403 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3ag  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Distinct variable groups:    f, G, w, x, y, z    f, H, w, x, y, z   
f, X, x, z
Allowed substitution hints:    A( x, y, z, w, f)    V( x, y, z, w, f)    X( y, w)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5347 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( f  Fn  x  <->  H  Fn  z ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  f  =  H )
3 simpr 110 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
42, 3fveq12d 5561 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( H `  w ) )
52, 3reseq12d 4943 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( H  |`  w
) )
65fveq2d 5558 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  ( G `  ( f  |`  y ) )  =  ( G `  ( H  |`  w ) ) )
74, 6eqeq12d 2208 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( G `
 ( f  |`  y ) )  <->  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
8 simplr 528 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
97, 8cbvraldva2 2733 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
101, 9anbi12d 473 . . 3  |-  ( ( f  =  H  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <-> 
( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
1110cbvrexdva 2736 . 2  |-  ( f  =  H  ->  ( E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) )  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
12 tfr1onlem3ag.1 . 2  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
1311, 12elab2g 2907 1  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473    |` cres 4661    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262
This theorem is referenced by:  tfr1onlem3  6391  tfr1onlemsucaccv  6394  tfr1onlembxssdm  6396  tfr1onlemres  6402
  Copyright terms: Public domain W3C validator