ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlem3ag Unicode version

Theorem tfr1onlem3ag 6305
Description: Lemma for transfinite recursion. This lemma changes some bound variables in  A (version of tfrlem3ag 6277 but for tfr1on 6318 related lemmas). (Contributed by Jim Kingdon, 13-Mar-2022.)
Hypothesis
Ref Expression
tfr1onlem3ag.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfr1onlem3ag  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Distinct variable groups:    f, G, w, x, y, z    f, H, w, x, y, z   
f, X, x, z
Allowed substitution hints:    A( x, y, z, w, f)    V( x, y, z, w, f)    X( y, w)

Proof of Theorem tfr1onlem3ag
StepHypRef Expression
1 fneq12 5281 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( f  Fn  x  <->  H  Fn  z ) )
2 simpll 519 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  f  =  H )
3 simpr 109 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
42, 3fveq12d 5493 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( H `  w ) )
52, 3reseq12d 4885 . . . . . . 7  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( H  |`  w
) )
65fveq2d 5490 . . . . . 6  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  ( G `  ( f  |`  y ) )  =  ( G `  ( H  |`  w ) ) )
74, 6eqeq12d 2180 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( G `
 ( f  |`  y ) )  <->  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
8 simplr 520 . . . . 5  |-  ( ( ( f  =  H  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
97, 8cbvraldva2 2699 . . . 4  |-  ( ( f  =  H  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) )  <->  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) )
101, 9anbi12d 465 . . 3  |-  ( ( f  =  H  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) )  <-> 
( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
1110cbvrexdva 2702 . 2  |-  ( f  =  H  ->  ( E. x  e.  X  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( G `
 ( f  |`  y ) ) )  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w
)  =  ( G `
 ( H  |`  w ) ) ) ) )
12 tfr1onlem3ag.1 . 2  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
1311, 12elab2g 2873 1  |-  ( H  e.  V  ->  ( H  e.  A  <->  E. z  e.  X  ( H  Fn  z  /\  A. w  e.  z  ( H `  w )  =  ( G `  ( H  |`  w ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445    |` cres 4606    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  tfr1onlem3  6306  tfr1onlemsucaccv  6309  tfr1onlembxssdm  6311  tfr1onlemres  6317
  Copyright terms: Public domain W3C validator