ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3ag Unicode version

Theorem tfrlem3ag 6328
Description: Lemma for transfinite recursion. This lemma just changes some bound variables in  A for later use. (Contributed by Jim Kingdon, 5-Jul-2019.)
Hypothesis
Ref Expression
tfrlem3.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem3ag  |-  ( G  e.  _V  ->  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) ) )
Distinct variable groups:    w, f, x, y, z, F    f, G, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)

Proof of Theorem tfrlem3ag
StepHypRef Expression
1 fneq12 5324 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( f  Fn  x  <->  G  Fn  z ) )
2 simpll 527 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  f  =  G )
3 simpr 110 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
42, 3fveq12d 5537 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( G `  w ) )
52, 3reseq12d 4923 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( G  |`  w
) )
65fveq2d 5534 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( G  |`  w ) ) )
74, 6eqeq12d 2204 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
8 simplr 528 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
97, 8cbvraldva2 2725 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  <->  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
101, 9anbi12d 473 . . 3  |-  ( ( f  =  G  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )  <-> 
( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
1110cbvrexdva 2728 . 2  |-  ( f  =  G  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
12 tfrlem3.1 . 2  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
1311, 12elab2g 2899 1  |-  ( G  e.  _V  ->  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468   E.wrex 2469   _Vcvv 2752   Oncon0 4378    |` cres 4643    Fn wfn 5226   ` cfv 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-res 4653  df-iota 5193  df-fun 5233  df-fn 5234  df-fv 5239
This theorem is referenced by:  tfrlemisucaccv  6344
  Copyright terms: Public domain W3C validator