ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 Unicode version

Theorem tfrlemi1 6300
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that  F is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlemi1  |-  ( (
ph  /\  C  e.  On )  ->  E. g
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
Distinct variable groups:    f, g, u, x, y, A    f, F, g, u, x, y    ph, y    C, g, u    ph, f
Allowed substitution hints:    ph( x, u, g)    C( x, y, f)

Proof of Theorem tfrlemi1
Dummy variables  e  h  k  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  g  =  k )
2 simpl 108 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  z  =  w )
31, 2fneq12d 5280 . . . . . 6  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g  Fn  z  <->  k  Fn  w ) )
41fveq1d 5488 . . . . . . . 8  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g `  u
)  =  ( k `
 u ) )
51reseq1d 4883 . . . . . . . . 9  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g  |`  u
)  =  ( k  |`  u ) )
65fveq2d 5490 . . . . . . . 8  |-  ( ( z  =  w  /\  g  =  k )  ->  ( F `  (
g  |`  u ) )  =  ( F `  ( k  |`  u
) ) )
74, 6eqeq12d 2180 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  ( ( g `  u )  =  ( F `  ( g  |`  u ) )  <->  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )
82, 7raleqbidv 2673 . . . . . 6  |-  ( ( z  =  w  /\  g  =  k )  ->  ( A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) )  <->  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )
93, 8anbi12d 465 . . . . 5  |-  ( ( z  =  w  /\  g  =  k )  ->  ( ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <-> 
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )
109cbvexdva 1917 . . . 4  |-  ( z  =  w  ->  ( E. g ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <->  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) ) )
1110imbi2d 229 . . 3  |-  ( z  =  w  ->  (
( ph  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  <->  ( ph  ->  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) ) ) )
12 fneq2 5277 . . . . . 6  |-  ( z  =  C  ->  (
g  Fn  z  <->  g  Fn  C ) )
13 raleq 2661 . . . . . 6  |-  ( z  =  C  ->  ( A. u  e.  z 
( g `  u
)  =  ( F `
 ( g  |`  u ) )  <->  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1412, 13anbi12d 465 . . . . 5  |-  ( z  =  C  ->  (
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )  <-> 
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) ) )
1514exbidv 1813 . . . 4  |-  ( z  =  C  ->  ( E. g ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <->  E. g ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) ) )
1615imbi2d 229 . . 3  |-  ( z  =  C  ->  (
( ph  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  <->  ( ph  ->  E. g ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) ) ) )
17 r19.21v 2543 . . . 4  |-  ( A. w  e.  z  ( ph  ->  E. k ( k  Fn  w  /\  A. u  e.  w  (
k `  u )  =  ( F `  ( k  |`  u
) ) ) )  <-> 
( ph  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )
18 tfrlemisucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
1918tfrlem3 6279 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. e  e.  z  ( g `  e )  =  ( F `  ( g  |`  e
) ) ) }
20 tfrlemisucfn.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
21 fveq2 5486 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
2221eleq1d 2235 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( F `  x
)  e.  _V  <->  ( F `  z )  e.  _V ) )
2322anbi2d 460 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( Fun  F  /\  ( F `  x )  e.  _V )  <->  ( Fun  F  /\  ( F `  z )  e.  _V ) ) )
2423cbvalv 1905 . . . . . . . . . 10  |-  ( A. x ( Fun  F  /\  ( F `  x
)  e.  _V )  <->  A. z ( Fun  F  /\  ( F `  z
)  e.  _V )
)
2520, 24sylib 121 . . . . . . . . 9  |-  ( ph  ->  A. z ( Fun 
F  /\  ( F `  z )  e.  _V ) )
2625adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  A. z
( Fun  F  /\  ( F `  z )  e.  _V ) )
27 simpr 109 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  k  =  f )
28 simplr 520 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  w  =  v )
2927, 28fneq12d 5280 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  Fn  w  <->  f  Fn  v ) )
3027eleq1d 2235 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  e.  A  <->  f  e.  A ) )
31 simpll 519 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  t  =  h )
3227fveq2d 5490 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  ( F `  k )  =  ( F `  f ) )
3328, 32opeq12d 3766 . . . . . . . . . . . . . . 15  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  <. w ,  ( F `  k ) >.  =  <. v ,  ( F `  f ) >. )
3433sneqd 3589 . . . . . . . . . . . . . 14  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  { <. w ,  ( F `  k ) >. }  =  { <. v ,  ( F `  f )
>. } )
3527, 34uneq12d 3277 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  u.  { <. w ,  ( F `  k ) >. } )  =  ( f  u. 
{ <. v ,  ( F `  f )
>. } ) )
3631, 35eqeq12d 2180 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
t  =  ( k  u.  { <. w ,  ( F `  k ) >. } )  <-> 
h  =  ( f  u.  { <. v ,  ( F `  f ) >. } ) ) )
3729, 30, 363anbi123d 1302 . . . . . . . . . . 11  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
( k  Fn  w  /\  k  e.  A  /\  t  =  (
k  u.  { <. w ,  ( F `  k ) >. } ) )  <->  ( f  Fn  v  /\  f  e.  A  /\  h  =  ( f  u.  { <. v ,  ( F `
 f ) >. } ) ) ) )
3837cbvexdva 1917 . . . . . . . . . 10  |-  ( ( t  =  h  /\  w  =  v )  ->  ( E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `  k )
>. } ) )  <->  E. f
( f  Fn  v  /\  f  e.  A  /\  h  =  (
f  u.  { <. v ,  ( F `  f ) >. } ) ) ) )
3938cbvrexdva 2702 . . . . . . . . 9  |-  ( t  =  h  ->  ( E. w  e.  z  E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `
 k ) >. } ) )  <->  E. v  e.  z  E. f
( f  Fn  v  /\  f  e.  A  /\  h  =  (
f  u.  { <. v ,  ( F `  f ) >. } ) ) ) )
4039cbvabv 2291 . . . . . . . 8  |-  { t  |  E. w  e.  z  E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `  k )
>. } ) ) }  =  { h  |  E. v  e.  z  E. f ( f  Fn  v  /\  f  e.  A  /\  h  =  ( f  u. 
{ <. v ,  ( F `  f )
>. } ) ) }
41 simpl 108 . . . . . . . . 9  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  z  e.  On )
4241adantl 275 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  z  e.  On )
43 simpr 109 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )
44 simpr 109 . . . . . . . . . . . . . 14  |-  ( ( w  =  v  /\  k  =  f )  ->  k  =  f )
45 simpl 108 . . . . . . . . . . . . . 14  |-  ( ( w  =  v  /\  k  =  f )  ->  w  =  v )
4644, 45fneq12d 5280 . . . . . . . . . . . . 13  |-  ( ( w  =  v  /\  k  =  f )  ->  ( k  Fn  w  <->  f  Fn  v ) )
47 simplr 520 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  k  =  f )
48 simpr 109 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  u  =  y )
4947, 48fveq12d 5493 . . . . . . . . . . . . . . 15  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
k `  u )  =  ( f `  y ) )
5047, 48reseq12d 4885 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
k  |`  u )  =  ( f  |`  y
) )
5150fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  ( F `  ( k  |`  u ) )  =  ( F `  (
f  |`  y ) ) )
5249, 51eqeq12d 2180 . . . . . . . . . . . . . 14  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
( k `  u
)  =  ( F `
 ( k  |`  u ) )  <->  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
53 simpll 519 . . . . . . . . . . . . . 14  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  w  =  v )
5452, 53cbvraldva2 2699 . . . . . . . . . . . . 13  |-  ( ( w  =  v  /\  k  =  f )  ->  ( A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) )  <->  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
5546, 54anbi12d 465 . . . . . . . . . . . 12  |-  ( ( w  =  v  /\  k  =  f )  ->  ( ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <-> 
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) ) )
5655cbvexdva 1917 . . . . . . . . . . 11  |-  ( w  =  v  ->  ( E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <->  E. f ( f  Fn  v  /\  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) ) )
5756cbvralv 2692 . . . . . . . . . 10  |-  ( A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <->  A. v  e.  z  E. f ( f  Fn  v  /\  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
5843, 57sylib 121 . . . . . . . . 9  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  A. v  e.  z  E. f
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
5958adantl 275 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  A. v  e.  z  E. f
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
6019, 26, 40, 42, 59tfrlemiex 6299 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
6160expr 373 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  ( A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )
6261expcom 115 . . . . 5  |-  ( z  e.  On  ->  ( ph  ->  ( A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) )  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6362a2d 26 . . . 4  |-  ( z  e.  On  ->  (
( ph  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )  ->  ( ph  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6417, 63syl5bi 151 . . 3  |-  ( z  e.  On  ->  ( A. w  e.  z 
( ph  ->  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )  ->  ( ph  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6511, 16, 64tfis3 4563 . 2  |-  ( C  e.  On  ->  ( ph  ->  E. g ( g  Fn  C  /\  A. u  e.  C  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )
6665impcom 124 1  |-  ( (
ph  /\  C  e.  On )  ->  E. g
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   _Vcvv 2726    u. cun 3114   {csn 3576   <.cop 3579   Oncon0 4341    |` cres 4606   Fun wfun 5182    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfrlemi14d  6301  tfrexlem  6302
  Copyright terms: Public domain W3C validator