ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi1 Unicode version

Theorem tfrlemi1 6385
Description: We can define an acceptable function on any ordinal.

As with many of the transfinite recursion theorems, we have a hypothesis that states that  F is a function and that it is defined for all ordinals. (Contributed by Jim Kingdon, 4-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlemi1  |-  ( (
ph  /\  C  e.  On )  ->  E. g
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
Distinct variable groups:    f, g, u, x, y, A    f, F, g, u, x, y    ph, y    C, g, u    ph, f
Allowed substitution hints:    ph( x, u, g)    C( x, y, f)

Proof of Theorem tfrlemi1
Dummy variables  e  h  k  t  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  g  =  k )
2 simpl 109 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  z  =  w )
31, 2fneq12d 5346 . . . . . 6  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g  Fn  z  <->  k  Fn  w ) )
41fveq1d 5556 . . . . . . . 8  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g `  u
)  =  ( k `
 u ) )
51reseq1d 4941 . . . . . . . . 9  |-  ( ( z  =  w  /\  g  =  k )  ->  ( g  |`  u
)  =  ( k  |`  u ) )
65fveq2d 5558 . . . . . . . 8  |-  ( ( z  =  w  /\  g  =  k )  ->  ( F `  (
g  |`  u ) )  =  ( F `  ( k  |`  u
) ) )
74, 6eqeq12d 2208 . . . . . . 7  |-  ( ( z  =  w  /\  g  =  k )  ->  ( ( g `  u )  =  ( F `  ( g  |`  u ) )  <->  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )
82, 7raleqbidv 2706 . . . . . 6  |-  ( ( z  =  w  /\  g  =  k )  ->  ( A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) )  <->  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )
93, 8anbi12d 473 . . . . 5  |-  ( ( z  =  w  /\  g  =  k )  ->  ( ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <-> 
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )
109cbvexdva 1941 . . . 4  |-  ( z  =  w  ->  ( E. g ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <->  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) ) )
1110imbi2d 230 . . 3  |-  ( z  =  w  ->  (
( ph  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  <->  ( ph  ->  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) ) ) )
12 fneq2 5343 . . . . . 6  |-  ( z  =  C  ->  (
g  Fn  z  <->  g  Fn  C ) )
13 raleq 2690 . . . . . 6  |-  ( z  =  C  ->  ( A. u  e.  z 
( g `  u
)  =  ( F `
 ( g  |`  u ) )  <->  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1412, 13anbi12d 473 . . . . 5  |-  ( z  =  C  ->  (
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )  <-> 
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) ) )
1514exbidv 1836 . . . 4  |-  ( z  =  C  ->  ( E. g ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) )  <->  E. g ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) ) )
1615imbi2d 230 . . 3  |-  ( z  =  C  ->  (
( ph  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  <->  ( ph  ->  E. g ( g  Fn  C  /\  A. u  e.  C  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) ) ) )
17 r19.21v 2571 . . . 4  |-  ( A. w  e.  z  ( ph  ->  E. k ( k  Fn  w  /\  A. u  e.  w  (
k `  u )  =  ( F `  ( k  |`  u
) ) ) )  <-> 
( ph  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )
18 tfrlemisucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
1918tfrlem3 6364 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. e  e.  z  ( g `  e )  =  ( F `  ( g  |`  e
) ) ) }
20 tfrlemisucfn.2 . . . . . . . . . 10  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
21 fveq2 5554 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
2221eleq1d 2262 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( F `  x
)  e.  _V  <->  ( F `  z )  e.  _V ) )
2322anbi2d 464 . . . . . . . . . . 11  |-  ( x  =  z  ->  (
( Fun  F  /\  ( F `  x )  e.  _V )  <->  ( Fun  F  /\  ( F `  z )  e.  _V ) ) )
2423cbvalv 1929 . . . . . . . . . 10  |-  ( A. x ( Fun  F  /\  ( F `  x
)  e.  _V )  <->  A. z ( Fun  F  /\  ( F `  z
)  e.  _V )
)
2520, 24sylib 122 . . . . . . . . 9  |-  ( ph  ->  A. z ( Fun 
F  /\  ( F `  z )  e.  _V ) )
2625adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  A. z
( Fun  F  /\  ( F `  z )  e.  _V ) )
27 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  k  =  f )
28 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  w  =  v )
2927, 28fneq12d 5346 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  Fn  w  <->  f  Fn  v ) )
3027eleq1d 2262 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  e.  A  <->  f  e.  A ) )
31 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  t  =  h )
3227fveq2d 5558 . . . . . . . . . . . . . . . 16  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  ( F `  k )  =  ( F `  f ) )
3328, 32opeq12d 3812 . . . . . . . . . . . . . . 15  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  <. w ,  ( F `  k ) >.  =  <. v ,  ( F `  f ) >. )
3433sneqd 3631 . . . . . . . . . . . . . 14  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  { <. w ,  ( F `  k ) >. }  =  { <. v ,  ( F `  f )
>. } )
3527, 34uneq12d 3314 . . . . . . . . . . . . 13  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
k  u.  { <. w ,  ( F `  k ) >. } )  =  ( f  u. 
{ <. v ,  ( F `  f )
>. } ) )
3631, 35eqeq12d 2208 . . . . . . . . . . . 12  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
t  =  ( k  u.  { <. w ,  ( F `  k ) >. } )  <-> 
h  =  ( f  u.  { <. v ,  ( F `  f ) >. } ) ) )
3729, 30, 363anbi123d 1323 . . . . . . . . . . 11  |-  ( ( ( t  =  h  /\  w  =  v )  /\  k  =  f )  ->  (
( k  Fn  w  /\  k  e.  A  /\  t  =  (
k  u.  { <. w ,  ( F `  k ) >. } ) )  <->  ( f  Fn  v  /\  f  e.  A  /\  h  =  ( f  u.  { <. v ,  ( F `
 f ) >. } ) ) ) )
3837cbvexdva 1941 . . . . . . . . . 10  |-  ( ( t  =  h  /\  w  =  v )  ->  ( E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `  k )
>. } ) )  <->  E. f
( f  Fn  v  /\  f  e.  A  /\  h  =  (
f  u.  { <. v ,  ( F `  f ) >. } ) ) ) )
3938cbvrexdva 2736 . . . . . . . . 9  |-  ( t  =  h  ->  ( E. w  e.  z  E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `
 k ) >. } ) )  <->  E. v  e.  z  E. f
( f  Fn  v  /\  f  e.  A  /\  h  =  (
f  u.  { <. v ,  ( F `  f ) >. } ) ) ) )
4039cbvabv 2318 . . . . . . . 8  |-  { t  |  E. w  e.  z  E. k ( k  Fn  w  /\  k  e.  A  /\  t  =  ( k  u.  { <. w ,  ( F `  k )
>. } ) ) }  =  { h  |  E. v  e.  z  E. f ( f  Fn  v  /\  f  e.  A  /\  h  =  ( f  u. 
{ <. v ,  ( F `  f )
>. } ) ) }
41 simpl 109 . . . . . . . . 9  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  z  e.  On )
4241adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  z  e.  On )
43 simpr 110 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )
44 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( w  =  v  /\  k  =  f )  ->  k  =  f )
45 simpl 109 . . . . . . . . . . . . . 14  |-  ( ( w  =  v  /\  k  =  f )  ->  w  =  v )
4644, 45fneq12d 5346 . . . . . . . . . . . . 13  |-  ( ( w  =  v  /\  k  =  f )  ->  ( k  Fn  w  <->  f  Fn  v ) )
47 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  k  =  f )
48 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  u  =  y )
4947, 48fveq12d 5561 . . . . . . . . . . . . . . 15  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
k `  u )  =  ( f `  y ) )
5047, 48reseq12d 4943 . . . . . . . . . . . . . . . 16  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
k  |`  u )  =  ( f  |`  y
) )
5150fveq2d 5558 . . . . . . . . . . . . . . 15  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  ( F `  ( k  |`  u ) )  =  ( F `  (
f  |`  y ) ) )
5249, 51eqeq12d 2208 . . . . . . . . . . . . . 14  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  (
( k `  u
)  =  ( F `
 ( k  |`  u ) )  <->  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
53 simpll 527 . . . . . . . . . . . . . 14  |-  ( ( ( w  =  v  /\  k  =  f )  /\  u  =  y )  ->  w  =  v )
5452, 53cbvraldva2 2733 . . . . . . . . . . . . 13  |-  ( ( w  =  v  /\  k  =  f )  ->  ( A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) )  <->  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
5546, 54anbi12d 473 . . . . . . . . . . . 12  |-  ( ( w  =  v  /\  k  =  f )  ->  ( ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <-> 
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) ) )
5655cbvexdva 1941 . . . . . . . . . . 11  |-  ( w  =  v  ->  ( E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <->  E. f ( f  Fn  v  /\  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) ) )
5756cbvralv 2726 . . . . . . . . . 10  |-  ( A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  <->  A. v  e.  z  E. f ( f  Fn  v  /\  A. y  e.  v  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
5843, 57sylib 122 . . . . . . . . 9  |-  ( ( z  e.  On  /\  A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) ) )  ->  A. v  e.  z  E. f
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
5958adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  A. v  e.  z  E. f
( f  Fn  v  /\  A. y  e.  v  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
6019, 26, 40, 42, 59tfrlemiex 6384 . . . . . . 7  |-  ( (
ph  /\  ( z  e.  On  /\  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) ) )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
6160expr 375 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  ( A. w  e.  z  E. k ( k  Fn  w  /\  A. u  e.  w  ( k `  u )  =  ( F `  ( k  |`  u ) ) )  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )
6261expcom 116 . . . . 5  |-  ( z  e.  On  ->  ( ph  ->  ( A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) )  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6362a2d 26 . . . 4  |-  ( z  e.  On  ->  (
( ph  ->  A. w  e.  z  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )  ->  ( ph  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6417, 63biimtrid 152 . . 3  |-  ( z  e.  On  ->  ( A. w  e.  z 
( ph  ->  E. k
( k  Fn  w  /\  A. u  e.  w  ( k `  u
)  =  ( F `
 ( k  |`  u ) ) ) )  ->  ( ph  ->  E. g ( g  Fn  z  /\  A. u  e.  z  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) ) )
6511, 16, 64tfis3 4618 . 2  |-  ( C  e.  On  ->  ( ph  ->  E. g ( g  Fn  C  /\  A. u  e.  C  (
g `  u )  =  ( F `  ( g  |`  u
) ) ) ) )
6665impcom 125 1  |-  ( (
ph  /\  C  e.  On )  ->  E. g
( g  Fn  C  /\  A. u  e.  C  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    u. cun 3151   {csn 3618   <.cop 3621   Oncon0 4394    |` cres 4661   Fun wfun 5248    Fn wfn 5249   ` cfv 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-recs 6358
This theorem is referenced by:  tfrlemi14d  6386  tfrexlem  6387
  Copyright terms: Public domain W3C validator