ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvrmov GIF version

Theorem cbvrmov 2729
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
cbvralv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvrmov (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvrmov
StepHypRef Expression
1 nfv 1539 . 2 𝑦𝜑
2 nfv 1539 . 2 𝑥𝜓
3 cbvralv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvrmo 2725 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  ∃*wrmo 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-reu 2479  df-rmo 2480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator