| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > raliunxp | Unicode version | ||
| Description: Write a double restricted
quantification as one universal quantifier.
In this version of ralxp 4864, |
| Ref | Expression |
|---|---|
| ralxp.1 |
|
| Ref | Expression |
|---|---|
| raliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliunxp 4860 |
. . . . . 6
| |
| 2 | 1 | imbi1i 238 |
. . . . 5
|
| 3 | 19.23vv 1930 |
. . . . 5
| |
| 4 | 2, 3 | bitr4i 187 |
. . . 4
|
| 5 | 4 | albii 1516 |
. . 3
|
| 6 | alrot3 1531 |
. . . 4
| |
| 7 | impexp 263 |
. . . . . . 7
| |
| 8 | 7 | albii 1516 |
. . . . . 6
|
| 9 | vex 2802 |
. . . . . . . 8
| |
| 10 | vex 2802 |
. . . . . . . 8
| |
| 11 | 9, 10 | opex 4314 |
. . . . . . 7
|
| 12 | ralxp.1 |
. . . . . . . 8
| |
| 13 | 12 | imbi2d 230 |
. . . . . . 7
|
| 14 | 11, 13 | ceqsalv 2830 |
. . . . . 6
|
| 15 | 8, 14 | bitri 184 |
. . . . 5
|
| 16 | 15 | 2albii 1517 |
. . . 4
|
| 17 | 6, 16 | bitri 184 |
. . 3
|
| 18 | 5, 17 | bitri 184 |
. 2
|
| 19 | df-ral 2513 |
. 2
| |
| 20 | r2al 2549 |
. 2
| |
| 21 | 18, 19, 20 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-opab 4145 df-xp 4724 df-rel 4725 |
| This theorem is referenced by: ralxp 4864 fmpox 6344 |
| Copyright terms: Public domain | W3C validator |