ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raliunxp Unicode version

Theorem raliunxp 4648
Description: Write a double restricted quantification as one universal quantifier. In this version of ralxp 4650, 
B ( y ) is not assumed to be constant. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
ralxp.1  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
raliunxp  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Distinct variable groups:    x, y, z, A    x, B, z    ph, y, z    ps, x
Allowed substitution hints:    ph( x)    ps( y,
z)    B( y)

Proof of Theorem raliunxp
StepHypRef Expression
1 eliunxp 4646 . . . . . 6  |-  ( x  e.  U_ y  e.  A  ( { y }  X.  B )  <->  E. y E. z ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
) )
21imbi1i 237 . . . . 5  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
3 19.23vv 1838 . . . . 5  |-  ( A. y A. z ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( E. y E. z ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
42, 3bitr4i 186 . . . 4  |-  ( ( x  e.  U_ y  e.  A  ( {
y }  X.  B
)  ->  ph )  <->  A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
54albii 1429 . . 3  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. x A. y A. z ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
6 alrot3 1444 . . . 4  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph ) )
7 impexp 261 . . . . . . 7  |-  ( ( ( x  =  <. y ,  z >.  /\  (
y  e.  A  /\  z  e.  B )
)  ->  ph )  <->  ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
87albii 1429 . . . . . 6  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  A. x ( x  =  <. y ,  z
>.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
) )
9 vex 2661 . . . . . . . 8  |-  y  e. 
_V
10 vex 2661 . . . . . . . 8  |-  z  e. 
_V
119, 10opex 4119 . . . . . . 7  |-  <. y ,  z >.  e.  _V
12 ralxp.1 . . . . . . . 8  |-  ( x  =  <. y ,  z
>.  ->  ( ph  <->  ps )
)
1312imbi2d 229 . . . . . . 7  |-  ( x  =  <. y ,  z
>.  ->  ( ( ( y  e.  A  /\  z  e.  B )  ->  ph )  <->  ( (
y  e.  A  /\  z  e.  B )  ->  ps ) ) )
1411, 13ceqsalv 2688 . . . . . 6  |-  ( A. x ( x  = 
<. y ,  z >.  ->  ( ( y  e.  A  /\  z  e.  B )  ->  ph )
)  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
158, 14bitri 183 . . . . 5  |-  ( A. x ( ( x  =  <. y ,  z
>.  /\  ( y  e.  A  /\  z  e.  B ) )  ->  ph )  <->  ( ( y  e.  A  /\  z  e.  B )  ->  ps ) )
16152albii 1430 . . . 4  |-  ( A. y A. z A. x
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
176, 16bitri 183 . . 3  |-  ( A. x A. y A. z
( ( x  = 
<. y ,  z >.  /\  ( y  e.  A  /\  z  e.  B
) )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
185, 17bitri 183 . 2  |-  ( A. x ( x  e. 
U_ y  e.  A  ( { y }  X.  B )  ->  ph )  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
19 df-ral 2396 . 2  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. x ( x  e.  U_ y  e.  A  ( { y }  X.  B )  ->  ph ) )
20 r2al 2429 . 2  |-  ( A. y  e.  A  A. z  e.  B  ps  <->  A. y A. z ( ( y  e.  A  /\  z  e.  B
)  ->  ps )
)
2118, 19, 203bitr4i 211 1  |-  ( A. x  e.  U_  y  e.  A  ( { y }  X.  B )
ph 
<-> 
A. y  e.  A  A. z  e.  B  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1312    = wceq 1314   E.wex 1451    e. wcel 1463   A.wral 2391   {csn 3495   <.cop 3498   U_ciun 3781    X. cxp 4505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-v 2660  df-sbc 2881  df-csb 2974  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-iun 3783  df-opab 3958  df-xp 4513  df-rel 4514
This theorem is referenced by:  ralxp  4650  fmpox  6064
  Copyright terms: Public domain W3C validator