ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ceqsralv Unicode version

Theorem ceqsralv 2757
Description: Restricted quantifier version of ceqsalv 2756. (Contributed by NM, 21-Jun-2013.)
Hypothesis
Ref Expression
ceqsralv.2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ceqsralv  |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem ceqsralv
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ x ps
2 ceqsralv.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
32ax-gen 1437 . 2  |-  A. x
( x  =  A  ->  ( ph  <->  ps )
)
4 ceqsralt 2753 . 2  |-  ( ( F/ x ps  /\  A. x ( x  =  A  ->  ( ph  <->  ps ) )  /\  A  e.  B )  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
51, 3, 4mp3an12 1317 1  |-  ( A  e.  B  ->  ( A. x  e.  B  ( x  =  A  ->  ph )  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341    = wceq 1343   F/wnf 1448    e. wcel 2136   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-ral 2449  df-v 2728
This theorem is referenced by:  eqreu  2918  sqrt2irr  12094
  Copyright terms: Public domain W3C validator