Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ceqsralv | Unicode version |
Description: Restricted quantifier version of ceqsalv 2760. (Contributed by NM, 21-Jun-2013.) |
Ref | Expression |
---|---|
ceqsralv.2 |
Ref | Expression |
---|---|
ceqsralv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1521 | . 2 | |
2 | ceqsralv.2 | . . 3 | |
3 | 2 | ax-gen 1442 | . 2 |
4 | ceqsralt 2757 | . 2 | |
5 | 1, 3, 4 | mp3an12 1322 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wceq 1348 wnf 1453 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-ral 2453 df-v 2732 |
This theorem is referenced by: eqreu 2922 sqrt2irr 12116 |
Copyright terms: Public domain | W3C validator |